精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2+ax-
1
4
a-
1
2

(1)若函数f(x)的值域为(-∞,0],求实数a的值;
(2)当x∈[0,1]时,函数f(x)的最大值为2,求实数a的值.
考点:利用导数求闭区间上函数的最值
专题:综合题,函数的性质及应用
分析:(1)利用函数f(x)的值域为(-∞,0],可得
-4(-
1
4
a-
1
2
)-a2
-4
=0,即可求实数a的值;
(2)分类讨论,分别根据函数的最大值求得a的值.
解答: 解:(1)∵函数f(x)的值域为(-∞,0],
-4(-
1
4
a-
1
2
)-a2
-4
=0,
∴a2-a-2=0,
∴a=2或a=-1;
(2)函数的对称轴为x=
a
2
,开口向下,则
a
2
≤0,即a≤0时,f(0)=2,即a=-10,满足题意;
0<
a
2
<1,
-4(-
1
4
a-
1
2
)-a2
-4
=2,∴a=-2或a=3,不符合题意;
a
2
≥1,即a≥2时,f(1)=-1+a-
1
4
a-
1
2
=2,即a=
14
3
,符合题意.
点评:本题主要考查二次函数的性质应用,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
lnx
1+x
-lnx,f(x)在x=x0处取得最大值,以下各式正确的序号为(  )
①x0
1
2

②x0
1
2

③f(x0)<x0
④f(x0)=x0
⑤f(x0)>x0
A、①③B、①④C、②④D、②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x

(1)求f(x)在点(1,0)处的切线方程;
(2)求f(x)在[1,e2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
1
2
x2
-(1+a)x(x>0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若f(x)≥0在(0,+∞)内恒成立,求实数a的取值范围.
(Ⅲ)n∈N*,求证:
1
ln2
+
1
ln3
+
1
ln4
+…+
1
ln(n+1)
3n+1
2n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=2x3+3x2-12x+14的在[-3,4]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax2-bx.
(1)当a=b=
1
2
时,求f(x)的最大值.
(2)令F(x)=f(x)+ax2+bx(0<x≤3),其图象上任意一点P(x0,y0)处的切线的斜率k≤
1
2
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=
1
3
,且-
π
2
<α<0,求
sin(2π+α)
tan(-α-π)cos(-α)•tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义y=log1+xf(x,y),x>0,y>0.
(1)比较f(1,3)与f(2,3)的大小;
(2)若e<x<y,证明:f(x-1,y)>f(y-1,x);
(3)设g(x)=f(1,log2(x3+ax2+bx+1))的图象为曲线C,曲线C在x0处的切线斜率为k,若x0∈(1,1-a),且存在实数b,使得k=-4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
6
)+m
(1)写出函数f(x)的最小正周期及对称中心坐标;
(2)若x∈[-
π
6
π
3
]时,函数f(x)的最小值为2,求函数f(x)的最大值,并指出此时x的值.

查看答案和解析>>

同步练习册答案