精英家教网 > 高中数学 > 题目详情
6.根据下面的要求,求S=1+2+┅+100值.
(Ⅰ)请将程序框图补充完整;
(Ⅱ)求出(1)中输出S的值.

分析 (Ⅰ)分析题目中的要求,发现这是一个累加型的问题,可用循环结构来实现,在编写算法的过程中要注意,累加的初始值为0,累加值每一次增加1,退出循环的条件是i>100,把握住以上要点不难得到答案;
(Ⅱ)利用等差数列的求和公式即可得解.

解答 解:(Ⅰ)S=S+i________(3分)
i>100?-----(6分)
(Ⅱ)S=1+2+┅+100=$\frac{(1+100)×100}{2}=5050$----(12分)

点评 本题考查了程序框图,可利用循环语句来实现数值的累加(乘)常分如下步骤:①观察S的表达式分析,循环的初值、终值、步长②观察每次累加的值的通项公式③在循环前给累加器和循环变量赋初值,累加器的初值为0,累乘器的初值为1,环变量的初值同累加(乘)第一项的相关初值④在循环体中要先计算累加(乘)值,如果累加(乘)值比较简单可以省略此步,累加(乘),给循环变量加步长⑤输出累加(乘)值.本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知圆C:(x-1)2+(y-1)2=1和点M(2,3).
(1)过点M向圆C引切线l,求直线l的方程;
(2)求以点M为圆心,且被直线y=2x+4截得的弦长为4的圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设命题p:$\left\{\begin{array}{l}{2x+y-2≥0}\\{x+3y-6≤0}\\{x-k≤0}\end{array}\right.$(x,y,k∈R,且k>0);命题q:(x-1)2+y2≤5(x,y∈R).若p是q的充分不必要条件为真命题,则k的取值范围是(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列程序,若输出的y的值是150,则输入的x的值是(  )
A.15B.20C.150D.200

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列有关命题的叙述,错误的个数为(  )
①若p∨q为真命题,则p∧q为真命题.
②“x>5”是“x2-4x-5>0”的充分不必要条件.
③命题P:?x∈R,使得x2+x-1<0,则¬p:?x∈R,使得x2+x-1≥0.
④命题“若x2-3x+2=0,则x=1”的否命题为假命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\frac{m}{x}$,g(x)=$\frac{{x}^{2}+m}{x}$,且对任意x1>x2≥2,都有f(x1)-f(x2)>x2-x1
(1)判断g(x)在(2,+∞)上的单调性;
(2)设集合A={x|f(x)=2,x>2},证明:A=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,a1=1,S2n=2an2+an
(1)求数列{an}的通项公式;
(2)若bn=2an,求b1+b3+b5+…+b2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算下列各式:
(1)($\frac{16}{81}$)${\;}^{-\frac{3}{4}}}$-($\sqrt{3}$-$\sqrt{2}$)0-(1$\frac{9}{16}$)${\;}^{\frac{1}{2}}}$;
(2)log98log29-(lg$\frac{5}{2}$+2lg2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,双曲线经过正六边形的四个顶点,且正六边形的另两个顶点A、B分别双曲线的两个焦点,则该双曲线的离心率为$\sqrt{3}+1$.

查看答案和解析>>

同步练习册答案