精英家教网 > 高中数学 > 题目详情
10.椭圆$\frac{x^2}{12}$+$\frac{y^2}{3}$=1的焦距是6.

分析 求出椭圆的a2=12,b2=3,c2=a2-b2=12-3=9,即可得到c=3,2c=6.

解答 解:椭圆$\frac{x^2}{12}$+$\frac{y^2}{3}$=1的a2=12,b2=3,
c2=a2-b2=12-3=9,
解得c=3,即2c=6,
即有椭圆的焦距为6.
故答案为:6.

点评 本题考查椭圆的方程和性质,主要考查椭圆的焦距的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.从A,B,C,D,E5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为(  )
A.24B.48C.72D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.终边在y轴的非负半轴上的角的集合是(  )
A.{x|x=k•180°,k∈Z}B.{x|x=k•180°+90°,k∈Z}
C.{x|x=k•360°,k∈Z}D.{x|x=k•360°+90°,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x>0,y>0,2x+y=3,则xy的最大值等于$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.
(1)求以点A为圆心,以$\sqrt{10}$为半径的圆与直线l相交所得弦长;
(2)设圆C的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知坐标平面内两点A=($\sqrt{3}$,-1),B=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),O为原点.
(1)证明OA⊥OB;
(2)设$\overrightarrow{a}$=$\overrightarrow{OA}$,$\overrightarrow{b}$=$\overrightarrow{OB}$,若存在不同时为零的实数k、t,使得$\overrightarrow{x}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow{b}$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+t$\overrightarrow{b}$,且$\overrightarrow{x}$⊥$\overrightarrow{y}$,求函数关系式k=f(t).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1上一点P到椭圆一个焦点的距离为7,则点P到另一个焦点的距离为(  )
A.1B.2C.15D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(2,0),若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+λ$\overrightarrow{b}$垂直,则λ的值等于(  )
A.-6B.-2C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{2}$=1(a>0),过x轴上一点Q(t,0),且斜率为k≠0的动直线l交椭圆E于A、B两点,A′与A关于x轴对称,直线BA′交x轴于点P,当t=0,k=$\sqrt{2}$时,|AB|=$\frac{4\sqrt{15}}{5}$.
(1)求a;
(2)若t≠0,则|OP|•|OQ|是否为定值?若是求出这个定值,若不是说明理由.

查看答案和解析>>

同步练习册答案