| 参加调查的项数 | 0 | 1 | 2 | 3 |
| 所占比例 | $\frac{1}{6}$ | P | $\frac{1}{3}$ | $\frac{1}{3}$ |
| 一周内进行体育锻炼的时间 | 4 | 6 | 8 | 10 |
| 身体健康指标 | 3 | 5 | 6 | 8 |
分析 (1)根据题意求出P的值,计算ξ的可能值并求出对应的频率P(ξ),写出ξ的分布列与数学期望Eξ;
(2)计算平均数$\overline{x}$、$\overline{y}$,代入线性回归方程求出a的值,利用回归方程估算身体健康指标值.
解答 解:(1)根据频率和为1,求出P=1-$\frac{1}{6}$-$\frac{1}{3}$-$\frac{1}{3}$=$\frac{1}{6}$;
从60名学生中抽取6名学生,检查项数为3的学生有2人,
从这6名学生中随机抽取2名进行体检,检查项数为3的学生人数ξ的值为0、1、2,
则P(ξ=0)=$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}$=$\frac{2}{5}$,
P(ξ=1)=$\frac{{C}_{4}^{1}{•C}_{2}^{1}}{{C}_{6}^{2}}$=$\frac{8}{15}$,
P(ξ=2)=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$;
∴ξ的分布列为:
| ξ | 0 | 1 | 2 |
| P | $\frac{2}{5}$ | $\frac{8}{15}$ | $\frac{1}{15}$ |
点评 本题考查了离散型随机变量的分布列与期望值以及线性回归方程的应用问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第5项 | B. | 第12项 | C. | 第13项 | D. | 第6项 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com