精英家教网 > 高中数学 > 题目详情
13.大学开设甲、乙、丙三门选修课供学生任意选修(也可不选),假设学生是否选修哪门课彼此互不影响.已知某学生只选修甲一门课的概率为0.08,选修甲和乙两门课的概率为0.12,至少选修一门的概率是0.88.
(1)求该学生选修甲、乙、丙的概率分别是多少?
(2)用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积,求ξ的分布列和数学期望.

分析 (1)设该学生选修甲、乙、丙的概率分别为x、y、z,利用相互独立事件概率乘法公式和对立事件概率计算公式列出方程组,能求出该学生选修甲、乙、丙的概率.
(2)依题意知ξ的可能取值为0,2,分别求出相应的概率,由此能求出ξ的分布列和数学期望.

解答 解:(1)设该学生选修甲、乙、丙的概率分别为x、y、z
由题意知$\left\{\begin{array}{l}x(1-y)(1-z)=0.08\\ xy(1-z)=0.12\\ 1-(1-x)(1-y)(1-z)=0.88\end{array}\right.$,(4分)
解之得$\left\{\begin{array}{l}x=0.4\\ y=0.6\\ z=0.5\end{array}\right.$,
∴该学生选修甲、乙、丙的概率分别是0.4,0.6,0.5.(6分)
(2)依题意知ξ的可能取值为0,2,(7分)
∴P(ξ=0)=xyz+(1-x)(1-y)(1-z)=0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24,(9分)
∴P(ξ=2)=1-P(ξ=0)=0.76
(或:仅仅选甲的概率为0.08,仅仅选乙概率为0.18,仅仅选丙的概率为0.12,合计为0.38,同样仅仅不选甲、仅仅不选乙、仅仅不选丙的概率和也为0.38,故P(ξ=2)=0.38+0.38=0.76)(9分)
则ξ的分布列为

ξ02
P0.240.76
∴ξ的数学期望为Eξ=0×0.24+2×0.76=1.52.(12分)

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式和对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{cos2x}{sin(x+\frac{π}{4})}$
(I)如果f(α)=$\frac{4}{3}$,试求sin2α的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若2(x-$\frac{1}{3}$$\overrightarrow{a}$)-$\frac{1}{2}$($\overrightarrow{a}$-3$\overrightarrow{b}$+$\overrightarrow{c}$)+$\overrightarrow{b}$=$\overrightarrow{0}$,其中$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为已知向量,则未知向量$\overrightarrow{x}$=$\frac{7}{12}$$\overrightarrow{a}$-$\frac{5}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在Rt△ABC中,∠A=90°,AB=AC=2,点D为AC中点,点E满足$\overrightarrow{BE}=\frac{1}{3}\overrightarrow{BC}$,则$\overrightarrow{AE}•\overrightarrow{BD}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.分别求满足下列条件的直线l的方程:
(1)过点A(0,2),且直线l的倾斜角的正弦值是0.5;
(2)过点A(2,1),且直线l的倾斜角是直线l1:3x+4y+5=0的倾斜角的一半.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+$\sqrt{2}$=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,当$|\overrightarrow{OA}-\overrightarrow{OB}|<\frac{{2\sqrt{5}}}{3}$时,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线l:x-2y+2=0过椭圆$\frac{x^2}{5}+\frac{y^2}{b^2}=1$$(0<b<\sqrt{5})$的一个顶点.则该椭圆的离心率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{{\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设ξ为随机变量,从侧面均是等边三角形的正四棱锥的8条棱中任选两条,ξ为这两条棱所成的角.
(1)求概率$P(ξ=\frac{π}{2})$;
(2)求ξ的分布列,并求其数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinα=$\frac{1}{3}$,α是第二象限角,则tan(π-α)=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

同步练习册答案