精英家教网 > 高中数学 > 题目详情
若两个分类变量x和y的列联表为:
y1y2合计
x1104555
x2203050
合计3075105
则x与y之间有关系的可能性为(  )
A、0.1%B、99.9%
C、97.5%D、0.25%
考点:独立性检验的应用
专题:计算题,概率与统计
分析:由列联表中的数据代入公式查表求解即可.
解答: 解:代入公式K2=
105×(10×30-20×45)2
30×75×55×50
≈6.11
查表可得,P(K2≥5.024)=0.025;
故1-0.025=97.5%;
故选:C.
点评:本题考查了独立性检验的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,以原点为极点,x轴正半轴为极轴,建立极坐标系,已知直线l的参数方程是
x=t-1
y=2t+2
(t为参数),圆C的极坐标方程为ρ=2
2
cos(θ-
π
4
),点P是直线l上的任意一点,PA是圆的一条切线,切点为A,则线段PA的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m+1)x2+4mx+2m-1.
(1)m为何值时,函数的图象与x轴有两个零点;
(2)如果函数两个零点在原点左右两侧,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,函数f(x)=Asin(2x+φ)(A>0,|φ|<
π
2
)的图象过点(0,
3
),则f(x)的图象的一个对称中心是(  )
A、(-
π
3
,0)
B、(-
π
6
,0)
C、(
π
6
,0)
D、(
π
4
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,直线l的参数方程为
x=-
1
2
t
y=2+
3
2
t
(t为参数),若以原点O为极点,x轴正半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4cosθ,设M是圆C上任一点,连结OM并延长到Q,使|OM|=|MQ|.
(Ⅰ)求点Q轨迹的直角坐标方程;
(Ⅱ)若直线l与点Q轨迹相交于A,B两点,点P的直角坐标为(0,2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面四边形ABCD内,点E和F分别在AD和BC上,且
DE
EA
.
CF
=λ
FB
(λ∈R,λ≠-1),用λ,
DC
AB
表示
EF
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,e4
D、(e4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是R上的减函数,且函数y=f(x-1)的图象关于点A(1,0)对称.设动点M(x,y),若实数x,y满足不等式 f(x2-8y+24)+f(y2-6x)≥0恒成立,则
OA
OM
的取值范围是(  )
A、(-∞,+∞)
B、[-1,1]
C、[2,4]
D、[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的图象如图所示,则函数f(x)有可能是(  )
A、xsin(
1
x2
B、xcos(
1
x2
C、x2sin(
1
x2
D、x2cos(
1
x2

查看答案和解析>>

同步练习册答案