精英家教网 > 高中数学 > 题目详情
12.若x,y满足约束条件$\left\{{\begin{array}{l}{x+y-5≤0}\\{2x-y-1≥0}\\{x-2y+1≤0}\end{array}}\right.$,则z=2x+y的最大值为8.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x+y-5=0}\\{x-2y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,即A(3,2)
将A(3,2)的坐标代入目标函数z=2x+y,
得z=2×3+2=8.即z=2x+y的最大值为8.
故答案为:8.

点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个圆经过椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式
(2)当d>1时,记cn=$\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若为a实数,且$\frac{2+ai}{1+i}$=3+i,则a=(  )
A.-4B.-3C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形
(Ⅰ)在图中画出这个正方形(不必说出画法和理由)
(Ⅱ)求平面α把该长方体分成的两部分体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在圆O中,M、N是弦AB的三等分点,弦CD,CE分别经过点M,N,若CM=2,MD=4,CN=3,则线段NE的长为(  )
A.$\frac{8}{3}$B.3C.$\frac{10}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线$\frac{{x}^{2}}{2}$-y2=1的焦距是2$\sqrt{3}$,渐近线方程是y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+b(a,b∈R).
(1)试讨论f(x)的单调性;
(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪(1,$\frac{3}{2}$)∪($\frac{3}{2}$,+∞),求c的值.

查看答案和解析>>

同步练习册答案