精英家教网 > 高中数学 > 题目详情
17.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形
(Ⅰ)在图中画出这个正方形(不必说出画法和理由)
(Ⅱ)求平面α把该长方体分成的两部分体积的比值.

分析 (Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;
(Ⅱ)求出MH=$\sqrt{E{H}^{2}-E{M}^{2}}$=6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.

解答 解:(Ⅰ)交线围成的正方形EFGH如图所示;
(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.
因为EFGH为正方形,所以EH=EF=BC=10,
于是MH=$\sqrt{E{H}^{2}-E{M}^{2}}$=6,AH=10,HB=6.
因为长方体被平面α分成两个高为10的直棱柱,
所以其体积的比值为$\frac{9}{7}$.

点评 本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(  )
A.(kπ-$\frac{1}{4}$,kπ+$\frac{3}{4}$,),k∈zB.(2kπ-$\frac{1}{4}$,2kπ+$\frac{3}{4}$),k∈z
C.(k-$\frac{1}{4}$,k+$\frac{3}{4}$),k∈zD.($2k-\frac{1}{4}$,2k+$\frac{3}{4}$),k∈z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“?x0∈(0,+∞),lnx0=x0-1”的否定是(  )
A.?x0∈(0,+∞),lnx0≠x0-1B.?x0∉(0,+∞),lnx0=x0-1
C.?x∈(0,+∞),lnx≠x-1D.?x∉(0,+∞),lnx=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a≥b>0,求证:2a3-b3≥2ab2-a2b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x,y满足约束条件$\left\{{\begin{array}{l}{x+y-5≤0}\\{2x-y-1≥0}\\{x-2y+1≤0}\end{array}}\right.$,则z=2x+y的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读如图的程序框图,运行相应的程序,则输出S的值为(  )
A.-10B.6C.14D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3$\sqrt{15}$,b-c=2,cosA=-$\frac{1}{4}$,则a的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=$\frac{π}{4}$,b2-a2=$\frac{1}{2}$c2
(1)求tanC的值;
(2)若△ABC的面积为3,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=$\frac{π}{2}$,PA=AD=2,AB=BC=1.
(1)求平面PAB与平面PCD所成二面角的余弦值;
(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.

查看答案和解析>>

同步练习册答案