精英家教网 > 高中数学 > 题目详情
9.如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=$\frac{π}{2}$,PA=AD=2,AB=BC=1.
(1)求平面PAB与平面PCD所成二面角的余弦值;
(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.

分析 以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A-xyz.
(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;
(2)利用换元法可得cos2<$\overrightarrow{CQ}$,$\overrightarrow{DP}$>≤$\frac{9}{10}$,结合函数y=cosx在(0,$\frac{π}{2}$)上的单调性,计算即得结论.

解答 解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A-xyz如图,
由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).
(1)∵AD⊥平面PAB,∴$\overrightarrow{AD}$=(0,2,0),是平面PAB的一个法向量,
∵$\overrightarrow{PC}$=(1,1,-2),$\overrightarrow{PD}$=(0,2,-2),
设平面PCD的法向量为$\overrightarrow{m}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PC}=0}\\{\overrightarrow{m}•\overrightarrow{PD}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x+y-2z=0}\\{2y-2z=0}\end{array}\right.$,
取y=1,得$\overrightarrow{m}$=(1,1,1),
∴cos<$\overrightarrow{AD}$,$\overrightarrow{m}$>=$\frac{\overrightarrow{AD}•\overrightarrow{m}}{|\overrightarrow{AD}||\overrightarrow{m}|}$=$\frac{\sqrt{3}}{3}$,
∴平面PAB与平面PCD所成两面角的余弦值为$\frac{\sqrt{3}}{3}$;
(2)∵$\overrightarrow{BP}$=(-1,0,2),设$\overrightarrow{BQ}$=λ$\overrightarrow{BP}$=(-λ,0,2λ)(0≤λ≤1),
又$\overrightarrow{CB}$=(0,-1,0),则$\overrightarrow{CQ}$=$\overrightarrow{CB}$+$\overrightarrow{BQ}$=(-λ,-1,2λ),
又$\overrightarrow{DP}$=(0,-2,2),从而cos<$\overrightarrow{CQ}$,$\overrightarrow{DP}$>=$\frac{\overrightarrow{CQ}•\overrightarrow{DP}}{|\overrightarrow{CQ}||\overrightarrow{DP}|}$=$\frac{1+2λ}{\sqrt{2+10{λ}^{2}}}$,
设1+2λ=t,t∈[1,3],
则cos2<$\overrightarrow{CQ}$,$\overrightarrow{DP}$>=$\frac{2{t}^{2}}{5{t}^{2}-10t+9}$=$\frac{2}{9(\frac{1}{t}{-\frac{5}{9})}^{2}+\frac{20}{9}}$≤$\frac{9}{10}$,
当且仅当t=$\frac{9}{5}$,即λ=$\frac{2}{5}$时,|cos<$\overrightarrow{CQ}$,$\overrightarrow{DP}$>|的最大值为$\frac{3\sqrt{10}}{10}$,
因为y=cosx在(0,$\frac{π}{2}$)上是减函数,此时直线CQ与DP所成角取得最小值.
又∵BP=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,∴BQ=$\frac{2}{5}$BP=$\frac{2\sqrt{5}}{5}$.

点评 本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形
(Ⅰ)在图中画出这个正方形(不必说出画法和理由)
(Ⅱ)求平面α把该长方体分成的两部分体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.i是虚数单位,计算$\frac{1-2i}{2+i}$的结果为-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M、GH的中点为N.
(Ⅰ)请将字母F、G、H标记在正方体相应的顶点处(不需说明理由);
(Ⅱ)证明:直线MN∥平面BDH;
(Ⅲ)求二面角A-EG-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+b(a,b∈R).
(1)试讨论f(x)的单调性;
(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪(1,$\frac{3}{2}$)∪($\frac{3}{2}$,+∞),求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足:a1∈N*,a1≤36,且an+1=$\left\{\begin{array}{l}{2{a}_{n},}&{{a}_{n}≤18}\\{2{a}_{n}-36,}&{{a}_{n>18}}\end{array}\right.$(n=1,2,…),记集合M={an|n∈N*}.
(Ⅰ)若a1=6,写出集合M的所有元素;
(Ⅱ)如集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;
(Ⅲ)求集合M的元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点($\frac{m}{3}$,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面 ABCD,BE=2DF,AE丄EC.
(Ⅰ)证明:平面AEC丄平面AFC
(Ⅱ)求直线AE与直线CF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若tanα=$\frac{1}{3}$,tan(α+β)=$\frac{1}{2}$,则tanβ=(  )
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{5}{7}$D.$\frac{5}{6}$

查看答案和解析>>

同步练习册答案