| A. | 6π | B. | 36π | C. | 7π | D. | 49π |
分析 根据△ABC为等边三角形,得到圆心到直线的距离为Rsin60°,再根据点到直线的距离公式列出方程,求出圆的半径即可.
解答 解:圆C化为x2+y2-2ax-2y+2=0,
即(x-a)2+(y-1)2=a2-1,
且圆心C(a,1),半径R=$\sqrt{{a}^{2}-1}$,
∵直线y=ax和圆C相交,△ABC为等边三角形,
∴圆心C到直线ax-y=0的距离为:
Rsin60°=$\frac{\sqrt{3}}{2}$×$\sqrt{{a}^{2}-1}$,
即d=$\frac{|{a}^{2}-1|}{\sqrt{{a}^{2}+1}}$=$\frac{\sqrt{3({a}^{2}-1)}}{2}$,
解得a2=7,
∴圆C的面积为πR2=π(7-1)=6π.
故选:A.
点评 本题主要考查直线和圆的位置关系的应用,根据△ABC为等边三角形,得到圆心到直线的距离是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x2-x | B. | y=x+2sin x | C. | y=x3+x | D. | y=tan x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 外离 | B. | 相交 | C. | 外切 | D. | 内切 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com