精英家教网 > 高中数学 > 题目详情
1.如图所示,网格纸上小正方形的边长为1,粗线画出的是某一无上盖几何体的三视图,则该几何体的表面积等于(  )
A.39πB.48πC.57πD.63π

分析 由已知中的三视图可得:该几何体为圆柱中挖去一个圆锥,画出直观图,数形结合可得答案.

解答 解:该几何体直观图为圆柱中挖去一个圆锥,如图所示,

∴该几何体的表面积为S=$π•{3}^{2}+2π•3•4+π•3•\sqrt{{3}^{2}+{4}^{2}}$=48π,
故选B.

点评 本题考查的知识点是圆柱的体积和表面积,圆锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知$f(x)=xlnx,g(x)=\int_0^x{(3{t^2}+2at-1)dt}$
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)对一切的x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$.
(Ⅰ)判断f(x)的奇偶性,并加以证明;
(Ⅱ)求方程$f(x)=\frac{1}{2}$的实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y-2=0相切.
(1)求椭圆C的方程;
(2)A,B分别为椭圆C的左、右顶点,动点M满足MB⊥AB,直线AM与椭圆交于点P(与A点不重合),以MP为直径的圆交线段BP于点N,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,矩形公园OABC中,OA=2km,OC=1km,公园的左下角阴影部分为以O为圆心,半径为1km的$\frac{1}{4}$圆面的人工湖,现计划修建一条与圆相切的观光道路EF(点E、F分别在边OA与BC上),D为切点.
(1)试求观光道路EF长度的最大值;
(2)公园计划在道路EF右侧种植草坪,试求草坪ABFE面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow a,\overrightarrow b$为单位向量,若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-2$\overrightarrow{b}$|,则$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四边形ABCD为梯形,AB∥CD,PD⊥平面ABCD,∠BAD=∠ADC=90°,$DC=2AB=2,DA=\sqrt{3}$.
(1)线段BC上是否存在一点E,使平面PBC⊥平面PDE?若存在,请给出$\frac{BE}{CE}$的值,并进行证明;若不存在,请说明理由.
(2)若PD=$\sqrt{3}$,线段PC上有一点F,且PC=3PF,求三棱锥A-FBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C的方程为$\frac{x^2}{4}-\frac{y^2}{5}=1$,其左、右焦点分别是F1,F2.若点M坐标为(2,1),过双曲线左焦点且斜率为$\frac{5}{12}$的直线与双曲线右支交于点P,则${S_{△PM{F_1}}}-{S_{△PM{F_2}}}$=(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=$\frac{sinx}{(x-a)(x+1)}$是奇函数,则实数a=1.

查看答案和解析>>

同步练习册答案