精英家教网 > 高中数学 > 题目详情

【题目】人最宝贵的是生命,然而有时候最不善待生命的恰恰是人类自己,在交通运输业发展迅猛的今天,由于不懂得交通法规,以及人们的交通安全观念和自我保护意识还没有跟上时代的步伐,那些在交通复杂多变的地方而引发的交通事故也是接连不断.为了警示市民,某市对近三年内某多发事故路口在每天时间段内发生的480次事故中随机抽取100次进行调研,数据按事发时间分成8组:(单位:小时),制成了如图所示的频率分布直方图.

(Ⅰ)求图中的值,并根据频率分布直方图估计这480次交通事故发生在时间段的次数;

(Ⅱ)在抽出的100次交通事故中按时间段采用分层抽样的方法抽取10次进行个案分析,再从这10次交通事故中选取3次交通事故作重点专题研究.记这3次交通事故中发生时间在的次数为,求的分布列及数学期望.

答案见解析

【解析】(Ⅰ)由频率分布直方图知,除外的频率和为

,……………………2分

,则.……………………3分

所以估计这480次交通事故发生在时间段的次数为

(次).………5分

(Ⅱ)用分层抽样的方法,从中选取10次交通事故,则交通事故中发生时间在内有6次,不在内有4次,则的可能取值为.………6分

.……………………10分

的分布列为

0

1

2

3

所以.……………………12分

【命题意图】本题主要考查频率分布直方图、离散型随机变量的分布列及数学期望,意在考查学生的识图

能力、数据处理能力、运算求解能力以及分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=log2 log2 ,x∈(2,8]的值域为(
A.[0,2]
B.[﹣ ,2]
C.(0,2]
D.(﹣ ,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定圆,动圆过点且与圆相切,记圆心的轨迹为.

(I)求轨迹的方程;

)若与轴不重合的直线过点,且与轨迹交于两点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列4个命题:

①“若a、G、b成等比数列,则G2=ab”的逆命题;

②“如果x2+x﹣6≥0,则x>2”的否命题;

③在△ABC中,“若A>B”则“sinA>sinB”的逆否命题;

④当0≤α≤π时,若8x2﹣(8sinα)x+cos2α≥0对xR恒成立,则α的取值范围是0≤α≤

其中真命题的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的两顶点坐标A(﹣1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.

(I)求曲线M的方程;

(Ⅱ)设直线BC与曲线M的另一交点为D,当点A在以线段CD为直径的圆上时,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c为△ABC的三个内角A,B,C的对边,向量 =(﹣1, ), =(cosA,sinA).若 ,且acosB+bcosA=csinC,则角A,B的大小分别为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是直角梯形,上的点.

)求证:平面平面

的中点,且二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式mx2+2x+6m>0,在下列条件下分别求m的值或取值范围:
(1)不等式的解集为{x|2<x<3};
(2)不等式的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

)当讨论函数的单调性

)若恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案