分析 (1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2x-$\frac{π}{6}$)$+\frac{1}{2}$,利用周期公式即可得解.
(2)由范围x∈[-$\frac{π}{4}$,$\frac{π}{6}$],可求2x-$\frac{π}{6}$∈[-$\frac{2π}{3}$,$\frac{π}{6}$],利用正弦函数的图象和性质即可得解值域.
解答 解:(1)∵f(x)=sinx(sinx+$\sqrt{3}$cosx)
=sin2x+$\sqrt{3}$sinxcosx
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x+$\frac{1}{2}$
=sin(2x-$\frac{π}{6}$)$+\frac{1}{2}$,
∴函数f(x)的最小正周期T=$\frac{2π}{2}=π$.
(2)∵x∈[-$\frac{π}{4}$,$\frac{π}{6}$],
∴2x-$\frac{π}{6}$∈[-$\frac{2π}{3}$,$\frac{π}{6}$],
∴sin(2x-$\frac{π}{6}$)∈[-1,$\frac{1}{2}$],
∴函数f(x)=sin(2x-$\frac{π}{6}$)$+\frac{1}{2}$在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的值域为:[-$\frac{1}{2}$,1].
点评 本题值域考查了三角函数恒等变换的应用,正弦函数的图象和性质,三角函数周期公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin(2x-$\frac{π}{3}$) | B. | y=sin(2x-$\frac{π}{6}$) | C. | y=sin(2x+$\frac{π}{6}$) | D. | y=sin($\frac{1}{2}$x+$\frac{π}{6}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-2m | B. | 2m-1 | C. | 1-($\frac{1}{2}$)m | D. | ($\frac{1}{2}$)m-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com