精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,将椭圆上每一点的横坐标保持不变,纵坐标变为原来的一半,得曲线C,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为

写出曲线C的普通方程和直线l的直角坐标方程;

已知点且直线l与曲线C交于AB两点,求的值.

【答案】(1);(2)

【解析】

为椭圆上的点,在已知变换下变为C上点,依题意,得由此能求出曲线C的普通方程;由直线l的极坐标方程,能求出直线l的直角坐标方程;

求出直线l的参数方程并代入,得:,结合,求解即可。

将椭圆上每一点的横坐标保持不变,纵坐标变为原来的一半,得曲线C

为椭圆上的点,在已知变换下变为C上点

依题意,得

,得

曲线C的普通方程为

直线l的极坐标方程为

直线l的直角坐标方程为

且直线l与曲线C交于AB两点,在直线l上,

把直线l的参数方程代入,得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线y=fx)在点处的切线与坐标轴围成的三角形的面积;

2)求过点作曲线y=fx)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为,左、右焦点分别为

(1)求椭圆的方程;

(2)若直线与椭圆交于A,B两点,与以为直径的圆交于C,D两点,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1642年,帕斯卡发明了一种可以进行十进制加减法的机械计算机年,莱布尼茨改进了帕斯卡的计算机,但莱布尼兹认为十进制的运算在计算机上实现起来过于复杂,随即提出了“二进制”数的概念之后,人们对进位制的效率问题进行了深入的研究研究方法如下:对于正整数,我们准备张不同的卡片,其中写有数字0,1,…,的卡片各有如果用这些卡片表示进制数,通过不同的卡片组合,这些卡片可以表示个不同的整数例如时,我们可以表示出个不同的整数假设卡片的总数为一个定值,那么进制的效率最高则意味着张卡片所表示的不同整数的个数最大根据上述研究方法,几进制的效率最高?  

A. 二进制 B. 三进制 C. 十进制 D. 十六进制

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中,

求证:面

,在线段上是否存在一点,使二面角的平面角的余弦值为?若存在,确定点的位置;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为轴,直线轴于点,为椭圆上的动点,的面积的最大值为1.

(1)求椭圆的方程;

(2)过点作两条直线与椭圆分别交于且使轴,如图,问四边形的两条对角线的交点是否为定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人事部门对参加某次专业技术考试的100人的成绩进行了统计,绘制的频率分布直方图如图所示.规定80分以上者晋级成功,否则晋级失败(满分为100分).

(1)求图中的值;

(2)估计该次考试的平均分 (同一组中的数据用该组的区间中点值代表);

(3)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关.

晋级成功

晋级失败

合计

16

50

合计

参考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形(边长为2个单位)的顶点处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为,则棋子就按逆时针方向行走个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点处的所有不同走法共有( )

A. 22种 B. 24种 C. 25种 D. 27种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定下列四个命题

若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

若一条直线和两个互相垂直的平面中的一个平面垂直,那么这条直线一定平行于另一个平面;

若一条直线和两个平行平面中的一个平面垂直,那么这条直线也和一个平面垂直;

若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直,

其中,真命题的个数是  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案