【题目】1642年,帕斯卡发明了一种可以进行十进制加减法的机械计算机年,莱布尼茨改进了帕斯卡的计算机,但莱布尼兹认为十进制的运算在计算机上实现起来过于复杂,随即提出了“二进制”数的概念之后,人们对进位制的效率问题进行了深入的研究研究方法如下:对于正整数,,我们准备张不同的卡片,其中写有数字0,1,…,的卡片各有张如果用这些卡片表示位进制数,通过不同的卡片组合,这些卡片可以表示个不同的整数例如,时,我们可以表示出共个不同的整数假设卡片的总数为一个定值,那么进制的效率最高则意味着张卡片所表示的不同整数的个数最大根据上述研究方法,几进制的效率最高?
A. 二进制 B. 三进制 C. 十进制 D. 十六进制
科目:高中数学 来源: 题型:
【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与轴交于点,与曲线交于点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进入高三后,由于改进了学习方法,甲、乙这两个学生的考试成绩预计同时有了大的提升:若甲(乙)的高二任意一次考试成绩为,则甲(乙)的高三对应的考试成绩预计为.
(1)试预测:高三6次测试后,甲、乙两个学生的平均成绩分别为多少?谁的成绩更稳定?
(2)若已知甲、乙两个学生的高二6次考试成绩分别由低到高进步的,定义为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值,求的平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年是中国传统的农历“鼠年”,有人用3个圆构成“卡通鼠”的形象,如图:是圆Q的圆心,圆Q过坐标原点O;点L、S均在x轴上,圆L与圆S的半径都等于2,圆S、圆L均与圆Q外切.已知直线l过点O.
(1)若直线l与圆L、圆S均相切,则l截圆Q所得弦长为__________;
(2)若直线l截圆L、圆S、圆Q所得弦长均等于d,则__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点,PA⊥平面ABC,∠ABC=90°,AB=PA=6,BC=8,则( )
A.三棱锥D-BEF的体积为6
B.直线PB与直线DF垂直
C.平面DEF截三棱锥P-ABC所得的截面面积为12
D.点P与点A到平面BDE的距离相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一批草莓中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
须数(个) | 10 | 5 | 20 | 15 |
(1)根据频数分布表计算草莓的重量在的频率;
(2)用分层抽样的方法从重量在和的草莓中共抽取5个,其中重量在的有几个?
(3)从(2)中抽出的5个草莓中任取2个,求重量在和中各有1个的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,将椭圆上每一点的横坐标保持不变,纵坐标变为原来的一半,得曲线C,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为.
写出曲线C的普通方程和直线l的直角坐标方程;
已知点且直线l与曲线C交于A、B两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市在节日期间进行有奖促销,凡在该超市购物满400元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就继续摸球规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励
(1)求1名顾客摸球2次停止摸奖的概率:
(2)记为1名顾客5次摸奖获得的奖金数额,求随机变量的分布列和数学期望
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com