精英家教网 > 高中数学 > 题目详情
17.已知梯形ABCD中,AB∥CD,∠B=$\frac{π}{2}$,DC=2AB=2BC=2$\sqrt{2}$,以直线AD为旋转轴旋转一周的都如图所示的几何体
(Ⅰ)求几何体的表面积
(Ⅱ)判断在圆A上是否存在点M,使二面角M-BC-D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.

分析 (1)根据题意知该旋转体下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,求出它的表面积即可;
(2)作ME⊥AC,EF⊥BC,连结FM,说明∠MFE为二面角M-BC-D的平面角,设∠CAM=θ,通过tan∠MFE=1求出$sin\frac{θ}{2}=\frac{1}{\sqrt{3}}$,然后求解CM.

解答 解:(1)根据题意,得;
该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,
其表面积为S=$\frac{1}{2}$×4π×2$\sqrt{2}$×2=8$\sqrt{2}$π,
或S=$\frac{1}{2}$×4π×2$\sqrt{2}$+$\frac{1}{2}$×(4π×2$\sqrt{2}$-2π×$\sqrt{2}$)+$\frac{1}{2}$×2π×$\sqrt{2}$=8$\sqrt{2}$π;
(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC,
∴∠MFE为二面角M-BC-D的平面角,
设∠CAM=θ,∴
EM=2sinθ,EF=$\sqrt{2}(1-cosθ)$,
∵tan∠MFE=1,∴$\frac{2sinθ}{\sqrt{2}(1-cosθ)}=1$,∴tan$\frac{θ}{2}$=$\frac{\sqrt{2}}{2}$,∴$sin\frac{θ}{2}=\frac{1}{\sqrt{3}}$,
∴CM=2$•2sin\frac{θ}{2}=\frac{4\sqrt{3}}{3}$.

点评 本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ln(x+$\frac{1}{a}$)-ax,其中a>0.
(1)a=1时,试讨论f(x)的单调性;
(2)若存在实数x1、x2满足-$\frac{1}{a}$<x1<0,x2>0,且f(x1)=f(x2)=0,求证:x1+x2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱柱ABCD-A1B1C1D1中,侧棱DD1⊥底面ABCD,底面ABCD是矩形,且AD=AA1
(Ⅰ)求证:CD1∥平面ABB1A1
(Ⅱ)求证:平面BCD1⊥平面DCC1D1
(Ⅲ)若点E为棱AB上的一个动点,求证:A1D⊥D1E.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若对任意x∈(-$\frac{1}{2}$,1),都有$\frac{x}{1+x-2{x}^{2}}$=a0+a1x+a2x2+…+anxn,则a3+a4=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax-$\frac{2}{x}$-3lnx,其中a为常数.
(1)当函数f(x)的图象在点($\frac{2}{3}$,f($\frac{2}{3}$))处的切线的斜率为1时,求函数f(x)在[$\frac{3}{2}$,3]上最小值;
(2)若函数f(x)在区间(0,+∞)上既有极大值又有极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正方体ABCD-A1B1C1D1中,E,F分别是AB,BC的中点.求证:
(1)EF∥平面AB1C;
(2)平面AB1C⊥平面BDD1B1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC=6,EC=6,则AD的长为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设△ABC的内角A、B、C所对的边分别为a、b、c,若$\frac{tanAtanB}{tanA+tanB}$=1007tanC,且a2+b2=mc2,则m=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知Rt△ABC中,AB=AC=$\sqrt{2}$,AD斜边BC上的高,以AD为折痕,将△ABD折 起,使∠BDC为直角.

(1)求证:平面ABD⊥平面BDC;
(2)求证:∠BAC=60°;
(3)求点A到平面BDC的距离;
(4)求点D到平面ABC的距离.

查看答案和解析>>

同步练习册答案