精英家教网 > 高中数学 > 题目详情
14.如图1,菱形ABCD的边长为12,∠BAD=60°,AC与BD交于O点.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=6$\sqrt{2}$.

( I)求证:平面ODM⊥平面ABC;
( II)求二面角M-AD-C的余弦值.

分析 (Ⅰ)推导出OD⊥AC,DO⊥OM,从而OD⊥面ABC,由此能证明平面ODM⊥平面ABC.
(Ⅱ)由OD⊥OC,OB⊥OC,OB⊥OD,建立空间直角坐标系,利用向量法能求出二面角M-AD-C的余弦值.

解答 (本小题满分12分)
证明:(Ⅰ)∵ABCD是菱形,
∴AD=DC,OD⊥AC,
△ADC中,AD=DC=12,∠ADC=120°,
∴OD=6,
又M是BC中点,∴$OM=\frac{1}{2}AB=6,MD=6\sqrt{2}$,
∵OD2+OM2=MD2,∴DO⊥OM,
∵OM,AC?面ABC,OM∩AC=O,
∴OD⊥面ABC,
又∵OD?平面ODM,∴平面ODM⊥平面ABC.…(6分)
解:(Ⅱ)由题意,OD⊥OC,OB⊥OC,
又由(Ⅰ)知OB⊥OD,建立如图所示空间直角坐标系,
由条件知:$D({6,0,0}),A({0,-6\sqrt{3},0}),M({0,3\sqrt{3},3})$
故$\overrightarrow{AM}=({0,9\sqrt{3},3}),\overrightarrow{AD}=({6,6\sqrt{3},0})$,
设平面MAD的法向量$\overrightarrow m=({x,y,z})$,
则 $\left\{\begin{array}{l}\overrightarrow m•\overrightarrow{AM}=0\\ \overrightarrow m•\overrightarrow{AD}=0\end{array}\right.$,即$\left\{\begin{array}{l}9\sqrt{3}y+3z=0\\ 6x+6\sqrt{3}y=0\end{array}\right.$,令$y=-\sqrt{3}$,则x=3,z=9
∴$\overrightarrow m=({3,-\sqrt{3},9})$
由条件知OB⊥平面ACD,故取平面ACD的法向量为$\overrightarrow n=({0,0,1})$
所以,$cos\left?{\overrightarrow m,\overrightarrow n}\right>=\frac{\overrightarrow m•\overrightarrow n}{{|{\overrightarrow m}||{\overrightarrow n}|}}=\frac{{3\sqrt{93}}}{31}$
由图知二面角M-AD-C为锐二面角,
故二面角M-AD-C的余弦值为$\frac{{3\sqrt{93}}}{31}$.(12分)

点评 本题考查面面垂直的证明,考查二面角的余弦值的求法,考查推理论证能力、空间思维能力、运算求解能力,考查等价转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.等差数列{an}满足a1=39,a1+a3=74,则通项公式an=(  )
A.-2n+41B.-2n+39C.-n2+40nD.-n2-40n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=sin(2x+\frac{π}{3})$,将其图象向右平移φ(φ>0)个单位后得到的函数为奇函数,则φ的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知{an}为公差不为零的等差数列,其中a1,a2,a5成等比数列,a3+a4=12
(1)求数列{an}的通项公式;
(2)记bn=$\frac{2}{{a}_{n}{a}_{n+1}}$,设{bn}的前n项和为Sn,求最小的正整数n,使得Sn>$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某地实行高考改革,考生除参加语文,数学,外语统一考试外,还需从物理,化学,生物,政治,历史,地理六科中选考三科,要求物理,化学,生物三科至少选一科,政治,历史,地理三科至少选一科,则考生共有多少种选考方法(  )
A.6B.12C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1,F2,A1,A2为其左、右顶点,以线段F1F2为直径的圆与双曲线的渐进线在第一象限的交点为M,且∠MA1A2=45°,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在等差数列{an}中,已知a4=5,a3是a2和a6的等比中项,则数列{an}的前5项的和为(  )
A.15B.20C.25D.15或25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,$sinA=\frac{5}{13}$,$cosB=\frac{3}{5}$,若最大边长为63,则最小边长为25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图:等边三角形PAB所在的平面与Rt△ABC所在的平面互相垂直,D、E分别为AB、AC边中点.已知AB⊥BC,AB=2,BC=2$\sqrt{3}$
(Ⅰ)证明:DE∥平面PBC;
(Ⅱ)证明:AB⊥PE;
(Ⅲ)求点D到平面PBE的距离.

查看答案和解析>>

同步练习册答案