精英家教网 > 高中数学 > 题目详情
9.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|=1,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则($\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$)•$\overrightarrow{c}$的最大值是$\sqrt{2}$-1.

分析 |$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|=1,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,不妨设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(cosθ,sinθ)(θ∈[0,2π)),代入化简利用三角函数的单调性最值即可得出.

解答 解:∵|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|=1,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
不妨设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(cosθ,sinθ)(θ∈[0,2π))
则($\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$)•$\overrightarrow{c}$=(1-cosθ)•cosθ+(1-sinθ)•sinθ=sinθ+cosθ-1=$\sqrt{2}sin(θ+\frac{π}{4})$-1$≤\sqrt{2}$-1,
∴($\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$)•$\overrightarrow{c}$的最大值是$\sqrt{2}$-1.
故答案为:$\sqrt{2}$-1.

点评 本题考查了三角函数的单调性最值、向量的坐标运算数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,正三棱柱A1B1C1-ABC,点D,E分别是A1C,AB的中点.
(1)求证:ED∥平面BB1C1C;
(2)若AB=$\sqrt{2}$BB1,求证:A1B⊥平面B1CE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某三棱锥的三视图如图所示,则该三棱锥的表面积是(  )
A.2+2$\sqrt{2}$B.2+$\sqrt{2}$C.4+2$\sqrt{2}$D.4+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.正弦函数f(x)=sinx图象的一条对称轴是(  )
A.x=0B.$x=\frac{π}{4}$C.$x=\frac{π}{2}$D.x=π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ),斜率为$\sqrt{3}$的直线l交y轴于点E(0,1).
(Ⅰ)求曲线C的直角坐标方程,直线l的参数方程;
(Ⅱ)直线l与曲线C交于A,B两点,求|EA|•|EB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则点(a,b)于圆心C之间的最小距离是(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.3$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρsinθ=1,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosϕ\\ y=2sinϕ\end{array}\right.$(ϕ为参数),l与C相交于A,B两点,则|AB|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知甲、乙两名同学在某项测试中得分成绩的茎叶图如图所示,x1,x2分别表示知甲、乙两名同学这项测试成绩的众数,s12,s22分别表示知甲、乙两名同学这项测试成绩的方差,则有(  )
A.x1>x2,s12<s22B.x1=x2,s12>s22C.x1=x2,s12=s22D.x1=x2,s12<s22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,AB=AD,∠BAD=90°,M,N,G分别是BD,BC,AB的中点,将等边△BCD沿BD折叠到△BC′D的位置,使得AD⊥C′B.
(Ⅰ)求证:平面GNM∥平面ADC′;
(Ⅱ)求证:C′A⊥平面ABD.

查看答案和解析>>

同步练习册答案