精英家教网 > 高中数学 > 题目详情
2.若函数f(x)=x2+x+alnx在(1,3)内有极值,则实数a的取值范围是(  )
A.(-7,-3)B.[-21,-3]C.[-7,-3]D.(-21,-3)

分析 求出函数的导数,问题转化为g(x)=2x2+x+a在(1,3)有根,根据二次函数的性质得到关于a的不等式组,解出即可.

解答 解:函数f(x)=x2+x+alnx在区间(1,3)内有极值
?函数f′(x)=0在区间(1,3)内有实数根,
f′(x)=2x+1+$\frac{a}{x}$=$\frac{{2x}^{2}+x+a}{x}$,
即g(x)=2x2+x+a在(1,3)有根,
∵g(x)的对称轴x=-$\frac{1}{4}$,开口向上,
∴g(x)在(1,3)递增,
故只需$\left\{\begin{array}{l}{g(1)<0}\\{g(3)>0}\end{array}\right.$,即$\left\{\begin{array}{l}{3+a<0}\\{21+a>0}\end{array}\right.$,
解得:-21<a<-3,
故选:D.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知直线l:x+y-3=0与x轴,y轴交点分别为A.B,幂函数y=f(x)的图象经过点(2,4),若点P在y=f(x)的图象上,则使得△ABP的面积等于3的P点的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=30.5,b=0.53,c=log0.53,则a、b、c的大小关系(  )
A.a<b<cB.c<b<aC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的极坐标方程为$\sqrt{2}ρ$cos($θ+\frac{π}{4}$)=-1,曲线C的参数方程是$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}}\end{array}\right.$(t为参数),以极点为原点,极轴为x轴正方向建立直角坐标系,点M($\frac{1}{2}$$-\frac{\sqrt{5}}{2}$,$\frac{1}{2}-\frac{\sqrt{5}}{2}$),直线l与曲线C交于A,B两点.
(Ⅰ)求直线l与曲线C的普通方程;
(Ⅱ)求|MA|2•|MB|2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$交于A,B两点,且椭圆过$(1,\frac{{\sqrt{2}}}{2}),(-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$两点,O为坐标原点.
(1)求椭圆方程;
(2)求△AOB面积的最大值,及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)(x∈R)满足f(4)=2,$f'(x)<\frac{1}{3}$,则不等式$f({x^2})<\frac{x^2}{3}+\frac{2}{3}$的解集为(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)满足f(x+2)=-$\frac{1}{f(x)}$,且对一切x∈R都成立,当x∈(1,3]时,f(x)=2-x,则f(2015)=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在极坐标系中,两点A,B的极坐标分别为A(1,$\frac{π}{6}$),B(2,-$\frac{π}{2}$),则A,B两点间的距离等于$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC中,角A,B,C所对的边分别为a,b,c且2acos2C+2ccosAcosC+b=0.
(1)求角C的大小;
(2)若b=4sinB,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案