精英家教网 > 高中数学 > 题目详情
6.在△ABC中,AB=AC=3,BC=2,求:
(1)△ABC的面积S△ABC及AC边上的高BE;
(2)△ABC的内切圆的半径r;
(3)△ABC的外接圆的半径R.

分析 (1)根据题意可知△ABC为等腰三角形,根据三角形面积计算公式S=底×高计算三角形面积;
(2)利用等面积,求)△ABC的内切圆的半径r;
(3)利用勾股定理,求△ABC的外接圆的半径R.

解答 解:(1)AB=AC=3,BC=2,作AD⊥BC,则AD为BC边上的高,
∵AB=AC,
∴D为BC边上的中点.
∴AD=2$\sqrt{2}$,
∴S△ABC=$\frac{1}{2}$×BC×AD=2$\sqrt{2}$.
由S△ABC=$\frac{1}{2}$×BE×AC=2$\sqrt{2}$,可得BE=$\frac{4\sqrt{2}}{3}$.
(2)由等面积可得S△ABC=2$\sqrt{2}$=$\frac{1}{2}$(3+3+2)r,∴r=$\frac{\sqrt{2}}{2}$;
(3)由勾股定理可得R2=(2$\sqrt{2}$-R)2+12,∴R=$\frac{9\sqrt{2}}{8}$.

点评 本题考查了勾股定理的运用,考查了等腰三角形的高线即中线的性质,解本题的关键是掌握等腰三角形底边的高线,中线,角平分线三线合一的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.适合|2a+7|+|2a-1|=8的整数a为-3,-2,-1,0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.证明函数f(x)=$\frac{-2}{x+1}$在区间(-1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设一扇形的周长为C(C>0),当扇形中心角为多大时,它有最大面积?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}$)是定义域为R的奇函数,且当x=2时,f(x)取得最大值2,则f(1)+f(2)+f(3)+…+f(100)=2+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2lnx+x2-a2x(x>0,a∈R).
(1)当a>0时,若函数f(x)在区间[1,2]上单调递减,求a的最小值;
(2)是否存在实数a,使f′(1)是f(x)的极小值?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知kx2+12kx-(k+2)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.教室大扫除的过程包括下列工作:A.扫地;B.拖地;C.擦桌子;D.擦窗户;E.擦门;F.掸尘;试分析哪些工作是邻接的?哪些是平行的?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在数列{an}中,a1=2,an=an-1+2$\sqrt{{a}_{n-1}}$+1,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案