精英家教网 > 高中数学 > 题目详情
12.对任意实数x,y定义运算x?y=$\left\{\begin{array}{l}{x(x≥y)}\\{y(x<y)}\end{array}\right.$设a=$\frac{ln2}{4}$,b=$\frac{ln3}{9}$,c=$\frac{ln5}{25}$.则b?a?c的值是(  )
A.aB.bC.cD.不确定

分析 比较对数值的大小.利用新定义求解即可.

解答 解:因为ln29>ln34,所以a>b,
对任意实数x,y定义运算x?y=$\left\{\begin{array}{l}{x(x≥y)}\\{y(x<y)}\end{array}\right.$设a=$\frac{ln2}{4}$,b=$\frac{ln3}{9}$,
b?a=$\frac{ln2}{4}$,
因为ln225>ln54,所以a>c,
b?a?c=$\frac{ln2}{4}$?$\frac{ln5}{25}$=$\frac{ln2}{4}$=a.
故选:A.

点评 本题考查对数值的大小比较,新定义的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知一扇形的周长为20cm,当这个扇形的面积最大时,半径R的值为(  )
A.4 cmB.5cmC.6cmD.7cm

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时f(x)=1-x2,函数$g(x)=\left\{\begin{array}{l}lgx,x>0\\|\frac{1}{2}x+2|,x≤0\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不等式组$\left\{\begin{array}{l}{y≤x}\\{y≥0}\\{x≤4}\end{array}\right.$,所表示的平面区域的面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.小花老师从甲、乙、丙、丁共计4名学生中选出2名分别担任班长和学习委员,她有(  )种备选方案.
A.4B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在(x2+$\frac{1}{{x}^{2}}$)6的展开式中.求:
(Ⅰ)第3项的二项式系数;
(Ⅱ)常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22015的末位数字是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.求值:($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)2014=$\frac{1}{2}-\frac{\sqrt{3}}{2}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,已知a=4,b=x,A=60°,如果解该三角形有两解,则(  )
A.x>4B.0<x≤4C.x≤$\frac{8\sqrt{3}}{3}$D.4<x<$\frac{8\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案