精英家教网 > 高中数学 > 题目详情
7.小花老师从甲、乙、丙、丁共计4名学生中选出2名分别担任班长和学习委员,她有(  )种备选方案.
A.4B.6C.10D.12

分析 根据题意,分析可得从甲、乙、丙、丁共计4名学生中选出2名分别担任班长和学习委员是排列问题,运用排列数公式计算即可得答案.

解答 解:根据题意,从甲、乙、丙、丁共计4名学生中选出2名分别担任班长和学习委员,是排列问题,
即有A42=4×3=12种不同的选法;
故选:D.

点评 本题考查排列数公式,关键要分析题意,认清是排列还是组合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设f(x)=eax(a>0).过点P(a,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,则△PQR的面积的最小值是(  )
A.1B.$\frac{\sqrt{2e}}{2}$C.$\frac{e}{2}$D.$\frac{{e}^{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow a=({-1,\sqrt{3}}),\overrightarrow b=({2,0})$,则向量$\overrightarrow b$在$\overrightarrow a$方向上的投影为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:$\frac{si{n}^{2}(α+π)cos(-α+π)}{tan(α+π)tan(α+2π)co{s}^{2}(-α-π)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC,a,b,c分别是角A,B,C所对的边,且a,b,c互不相等,设a=5,c=3,A=2C
(1)求cosC的值
(2)求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对任意实数x,y定义运算x?y=$\left\{\begin{array}{l}{x(x≥y)}\\{y(x<y)}\end{array}\right.$设a=$\frac{ln2}{4}$,b=$\frac{ln3}{9}$,c=$\frac{ln5}{25}$.则b?a?c的值是(  )
A.aB.bC.cD.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,∠BCA=90°,BC在BA的投影为BD(即CD⊥AB),如图,有射影定理BC2=BD•BA.类似,在四面体P-ABC中,PA,PB,PC两两垂直,点P在底面ABC的射影为点O(即PO⊥面ABC),则△PAB,△ABO,△ABC的面积S1,S2,S3也有类似结论,则类似的结论是什么?这个结论正确吗?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{4x+m}$(m>0),当x1、x2∈R,且x1+x2=1时,总有f(x1)+f(x2)=$\frac{1}{2}$.
(1)求m的值.
(2)设Sn=f($\frac{0}{n}$)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n}{n}$),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设数列{(-1)n}的前n项和为Sn,则Sn等于$\left\{\begin{array}{l}{0,n为偶数}\\{-1,n为奇数}\end{array}\right.$.

查看答案和解析>>

同步练习册答案