分析 (1)由题意,可令x1=x2=$\frac{1}{2}$,代入函数,计算即可得到m=2,
(2)由(1),运用倒序相加求和方法,即可得到Sn.
解答 解 (1)取x1=x2=$\frac{1}{2}$,则f($\frac{1}{2}$)=$\frac{1}{2+m}$=$\frac{1}{4}$,所以m=2.
(2)因为当x1、x2∈R,且x1+x2=1时,总有f(x1)+f(x2)=$\frac{1}{2}$,
所以f($\frac{0}{n}$)+f($\frac{n}{n}$)=$\frac{1}{2}$,f($\frac{1}{n}$)+f($\frac{n-1}{n}$)=$\frac{1}{2}$,
因为Sn=f($\frac{0}{n}$)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n}{n}$),
故Sn=f($\frac{n}{n}$)+f($\frac{n-1}{n}$)+f($\frac{n-2}{n}$)+…+f($\frac{0}{n}$).
两式相加得:
2Sn=[f($\frac{0}{n}$)+f($\frac{n}{n}$)]+[f($\frac{1}{n}$)+f($\frac{n-1}{n}$)]+…+[f($\frac{n}{n}$)+f($\frac{0}{n}$)]=$\frac{n+1}{2}$,
所以Sn=$\frac{n+1}{4}$.
点评 本题考查函数的求值,主要考查数列的求和方法:倒序相加求和,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $?{x_0}∈R.{log_{\frac{1}{2}}}{x_0}$=-1 | B. | $?x∈R{(\frac{1}{2})^x}$>0 | ||
| C. | ?x∈R x2+2x+3>0 | D. | ?x0∈R.cosx0=-$\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com