精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a、b、c分别是角A、B、C的对边,如果a,b,c成等差数列,B=60°,△ABC的面积为3$\sqrt{3}$,那么b等于(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.$\sqrt{3}$D.$\sqrt{2}$

分析 由a、b、c成等差数列,把a+c用b表示,由面积等于3$\sqrt{3}$求出ac=12,结合余弦定理列式求b的值.

解答 解:在△ABC中,∵a、b、c成等差数列,∴2b=a+c,
又∠B=60°,△ABC的面积为3$\sqrt{3}$,
∴$\frac{1}{2}$acsinB=$\frac{1}{2}$acsin60°=3$\sqrt{3}$,即$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$ac=3$\sqrt{3}$,ac=12.
由余弦定理b2=a2+c2-2accosB,得:
b2=a2+c2-2accos60°,即b2=(a+c)2-3ac,
∴b2=4b2-3×12,
∴b=2$\sqrt{3}$.
故选:B.

点评 本题考查了等差数列的性质,考查了三角形的面积公式,训练了余弦定理的应用,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知ABCDEF是正六边形,在下列4个表达式
(1)$\overrightarrow{FE}$+$\overrightarrow{ED}$,(2)2$\overrightarrow{BC}$+$\overrightarrow{DC}$,(3)$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{EC}$,(4)2$\overrightarrow{ED}$-$\overrightarrow{FA}$中,运算结果与$\overrightarrow{AC}$相等的表达式共有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知△ABC,a,b,c分别是角A,B,C所对的边,且a,b,c互不相等,设a=5,c=3,A=2C
(1)求cosC的值
(2)求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,∠BCA=90°,BC在BA的投影为BD(即CD⊥AB),如图,有射影定理BC2=BD•BA.类似,在四面体P-ABC中,PA,PB,PC两两垂直,点P在底面ABC的射影为点O(即PO⊥面ABC),则△PAB,△ABO,△ABC的面积S1,S2,S3也有类似结论,则类似的结论是什么?这个结论正确吗?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设集合M={a2},N={1,2},则“a=1”是“M⊆N”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{4x+m}$(m>0),当x1、x2∈R,且x1+x2=1时,总有f(x1)+f(x2)=$\frac{1}{2}$.
(1)求m的值.
(2)设Sn=f($\frac{0}{n}$)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n}{n}$),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在△ABC的顶点A(3,3)、B(2,-2)、C(-7,1).
(1)求△ABC的面积;
(2)∠A的平分线AD所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xoy中,设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦点为F,左准线为l.P为椭圆C上任意一点,直线OQ⊥FP,垂足为Q,直线OQ与l交于点A.
(1)若b=1,且b<c,直线l的方程为x=-$\frac{5}{2}$
(i)求椭圆C的方程
(ii)是否存在点P,使得$\frac{FP}{FQ}=\frac{1}{10}$?,若存在,求出点P的坐标;若不存在,说明理由.
(2)设直线FP与圆O:x2+y2=a2交于M,N两点,求证:直线AM,AN均与圆O相切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知5cos2α+4cos2β=4cosα,则2cos2α+cos2β+1的取值范围是(  )
A.[0,$\frac{16}{25}$]B.[-$\frac{5}{2}$,2]C.[-$\frac{5}{2}$,$\frac{3}{2}$]D.[0,$\frac{32}{25}$]

查看答案和解析>>

同步练习册答案