精英家教网 > 高中数学 > 题目详情

已知向量
(1)若,求
(2)求的最大值.

(1)(2) 

解析试题分析:(1)由向量垂直的充要条件:,这样就可得到关于的函数 ,化简得的值,结合题中所给的范围,不难确定出的的值; (2)由已知的坐标,可求出的坐标,在根据向量求模的公式由出题中的模的表达式,由三角函数的图象和性质,分析得由的范围求出的范围,进而得出的范围,即可求出的最大值.
试题解析:解(1)若,则     3分
  而,所以    6分
(2)    12分
时,的最大值为   14分
考点:1.向量的运算;2.三角函数的图象和性质

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量a=(cosθ,sinθ),θ∈[0,π],向量b=(,-1).
(1)若a⊥b,求θ的值;
(2)若|2a-b|<m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a="(cos" α,sin α),b="(cos" β,sin β),0<β<α<π.
(1)若|a-b|=,求证:a⊥b;
(2)设c=(0,1),若a+b=c,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面内动点P到点F(1,0)的距离等于它到直线x=-1的距离,记点P的轨迹为曲线Γ.
(1)求曲线Γ的方程;
(2)若点ABCΓ上的不同三点,且满足=0,证明:△ABC不可能为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设是单位圆上一点,一个动点从点出发,沿圆周按逆时针方向匀速旋转,12秒旋转一周.秒时,动点到达点秒时动点到达点.设,其纵坐标满足.

(1)求点的坐标,并求
(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边分别为向量,且
(1)求的值;
(2)若,,求角的大小及向量方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

数列 中的一个值等于

A. B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设两向量e1、e2满足|e1|=2,|e2|=1,e1、e2的夹角为60°,若向量2te1+7e2与向量e1+te2的夹角为钝角,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

[2013·江西抚州月考]数列{an}的前n项积为n2,那么当n≥2时,{an}的通项公式为(  )

A.an=2n-1 B.an=n2
C.an D.an

查看答案和解析>>

同步练习册答案