精英家教网 > 高中数学 > 题目详情
14.已知双曲线$\frac{y^2}{a}-\frac{x^2}{4}=1$的渐近线方程为$y=±\frac{{\sqrt{3}}}{2}x$,则此双曲线的离心率为(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{13}}}{3}$C.$\frac{{\sqrt{21}}}{3}$D.$\frac{5}{3}$

分析 根据双曲线$\frac{y^2}{a}-\frac{x^2}{4}=1$的渐近线方程为$y=±\frac{{\sqrt{3}}}{2}x$,可得$\frac{a}{b}$=$\frac{\sqrt{3}}{2}$,即可求出双曲线的离心率.

解答 解:∵双曲线$\frac{y^2}{a}-\frac{x^2}{4}=1$的渐近线方程为$y=±\frac{{\sqrt{3}}}{2}x$,
∴$\frac{a}{b}$=$\frac{\sqrt{3}}{2}$,
∴a=$\frac{\sqrt{3}}{2}$b,
∴c=$\frac{\sqrt{7}}{2}$b,
∴e=$\frac{\sqrt{21}}{3}$.
故选C.

点评 本题考查双曲线的离心率,考查学生的计算能力,确定$\frac{a}{b}$=$\frac{\sqrt{3}}{2}$是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知a,b表示两条不同直线,α,β,γ表示三个不重合的平面,给出下列命题:
①若α∩γ=a,β∩γ=b,且a∥b,则α∥β;
②若a,b相交且都在α,β外,a∥α,b∥α,a∥β,b∥β,则α∥β;
③若a?α,a∥β,α∩β=b,则a∥b.
其中正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,已知曲线C上任意一点到点$M(0,\frac{1}{2})$的距离与到直线y=-$\frac{1}{2}$的距离相等.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A1(x1,0),A2(x2,0)是x轴上的两点x1+x2≠0,x1x2≠0,过点A1,A2分别作x轴的垂线,与曲线C分别交于点A1′,A2′,直线A1′A2′与x轴交于点A3(x3,0),这样就称x1,x2确定了x3.同样,可由x2,x3确定了x4.现已知x1=6,x2=2,求x4的值.
(Ⅲ)在曲线C上有A、B两点,且$\overrightarrow{OA}•\overrightarrow{OB}$=0,过原点做直线AB的垂线与直线AB交于M,写出点M的轨迹方程(不要求写出计算过程).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设F1,F2分别是椭圆:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与该椭圆相交于P,Q两点,且|PQ|=$\frac{4}{3}$a.则该椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2+(b-8)x-a-ab,f(x)>0的解集为(-3,2),
(1)求f(x)的解析式;
(2)x>-1时,$y=\frac{f(x)-21}{x+1}$的最大值;
(3)若不等式ax2+kx-b>0的解集为A,且(1,4)⊆A,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-(a+2)x+alnx(a>0).
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)若a=4,y=f(x)的图象与直线y=m有三个不同交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}+1}&{(x≤0)}\\{-2x}&{(x>0)}\end{array}}\right.$,则f(3)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线y=kx+2(k∈R)与椭圆x2+$\frac{{y}^{2}}{m}$=1恒有交点,则实数m的取值范围为(  )
A.(4,+∞)B.[4,+∞)C.(-∞,4)D.(-∞,4]

查看答案和解析>>

同步练习册答案