精英家教网 > 高中数学 > 题目详情
5.若点A的坐标是(3,2),F是抛物线y2=2x的焦点,点P在抛物线上移动,为使得|PA|+|PF|取得最小值,则P点的坐标是(  )
A.(1,2)B.(2,1)C.(2,2)D.(0,1)

分析 将PF的长度转化为P到准线的距离.

解答 解:由P向准线x=-$\frac{1}{2}$作垂线,垂足为M,由抛物线的定义,PF=PM,再由定点A向准线作垂线,垂足为N,那么点P在该抛物线上移动时,有PA+PF=PA+PM≥AN,当且仅当A,P,N三点共线时取得最小值AN=3-(-$\frac{1}{2}$)=$\frac{7}{2}$,此时P的纵坐标为2,横坐标为2.
P点的坐标是:(2,2).
故选:C.

点评 本体着重考查抛物线的定义,即它的几何本质.基于此知识的基础上,进行转化求的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知n=$\int_0^3{({2x-1})dx}$,则${({\frac{3}{{\sqrt{x}}}-\root{3}{x}})^n}$的展开式中x2的系数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)和g(x)分别是R上的奇函数和偶函数,则函数h(x)=g(x)|f(x)|的图象((  )
A.关于原点对称B.关于x轴对称C.关于y轴对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.阅读程序框图,如果输出的函数值在区间[1,3]上,则输入的实数x的取值范围是(  )
A.[0,2]B.[0,1]C.[-1,1)D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数x满足9x-12•3x+27≤0,函数$f(x)={log_2}\frac{x}{2}•{log_{\sqrt{2}}}\frac{{\sqrt{x}}}{2}$.
(1)求实数x的取值范围;
(2)求函数f(x)的最大值和最小值,并求出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α,β是两个不同平面,直线l?β,则“α∥β”是“l∥α”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知O为原点,双曲线$\frac{x^2}{a^2}-{y^2}=1(a>0)$上有一点P,过P作两条渐近线的平行线,且与两渐近线的交点分别为A,B,平行四边形OBPA的面积为1,则双曲线的离心率为$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线$\frac{x^2}{4}-\frac{y^2}{12}$=1的右焦点与左准线之间的距离是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:“如果xy=0,那么x=0或y=0”,在命题p的逆命题,否命题,逆否命题三个命题中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案