精英家教网 > 高中数学 > 题目详情
10.已知α,β是两个不同平面,直线l?β,则“α∥β”是“l∥α”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 α,β是两个不同平面,直线l?β,则“α∥β”⇒“l∥α”,反之不成立.即可得出结论.

解答 解:∵α,β是两个不同平面,直线l?β,则“α∥β”⇒“l∥α”,反之不成立.
∴α,β是两个不同平面,直线l?β,则“α∥β”是“l∥α”的充分不必要条件.
故选:A.

点评 本题考查了线面面面平行的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中,已知顶点$A(-\sqrt{2},0)$、$B(\sqrt{2},0)$,直线PA与直线PB的斜率之积为$\frac{1}{2}$,则动点P的轨迹方程为(  )
A.$\frac{x^2}{2}-{y^2}$=1(x≠±$\sqrt{2}$)B.$\frac{x^2}{2}-{y^2}$=1C.$\frac{x^2}{2}+{y^2}$=1(y≠0)D.$\frac{y^2}{2}+{x^2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin(2x+$\frac{π}{6}$)+$\frac{1}{2}$
(1)画出函数f(x)在[-$\frac{π}{12}$,$\frac{11π}{12}$]上的简图.
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],函数g(x)=f(x)+m的最小值为2,求函数g(x)在该区间的最大值及取得最大值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数$f(x)=\sqrt{-{x^2}+(a+2)x-a-1}(a>0)$的定义域为集合A,函数g(x)=2x-1(x≤2)的值域为集合B.
(1)当a=1时,求集合A,B;
(2)若集合A,B满足A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若点A的坐标是(3,2),F是抛物线y2=2x的焦点,点P在抛物线上移动,为使得|PA|+|PF|取得最小值,则P点的坐标是(  )
A.(1,2)B.(2,1)C.(2,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a=(3,\sqrt{3})$,$\overrightarrow b=(0,x)$,若$\overrightarrow a•\overrightarrow b=|\overrightarrow a|$,则实数x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设m,n是两条不同的直线,α,β是两个不同的平面(  )
A.若m∥n,m⊥α,则n⊥αB.若m∥α,m∥β,则α∥βC.若m∥α,n∥α,则m∥nD.若m∥α,α⊥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,∠C=45°,O是△ABC的外心,若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}({m,n∈R})$,则m+n的取值范围为[-$\sqrt{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.正方体ABCD-A1B1C1D1中,E为AB中点,F为CD1中点.
(1)求证:EF∥平面ADD1A1
(2)AB=2,求三棱锥D1-DEF的体积.

查看答案和解析>>

同步练习册答案