精英家教网 > 高中数学 > 题目详情
12.在等腰直角三角形ABC中,点B为直角顶点,点E,F在边BC上(E在F的左侧),且AB=3,EF=1,tan∠EAF=$\frac{1}{4}$,则线段BE长为$\frac{\sqrt{13}-1}{2}$.

分析 设BE=x,则tan∠BAE=$\frac{x}{3}$,使用两角和的正切公式计算tan∠BAF,又tan∠BAF=$\frac{x+1}{3}$,列出方程解出x.

解答 解:设BE=x,则BF=BE+EF=x+1.
则tan∠BAE=$\frac{BE}{AB}$=$\frac{x}{3}$
∴tan∠BAF=tan(∠BAE+∠EAF)=$\frac{tan∠BAE+tan∠EAF}{1-tan∠BAEtan∠EAF}$=$\frac{\frac{x}{3}+\frac{1}{4}}{1-\frac{x}{3}•\frac{1}{4}}$=$\frac{4x+3}{12-x}$.
∵tan∠BAF=$\frac{BF}{AB}$=$\frac{x+1}{3}$,
∴$\frac{4x+3}{12-x}$=$\frac{x+1}{3}$.
解得x=$\frac{\sqrt{13}-1}{2}$.
故答案为:$\frac{\sqrt{13}-1}{2}$.

点评 本题考查了两角和的正切公式,解三角形,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.若向量$\overrightarrow a=(\sqrt{3}sinωx,sinωx),\overrightarrow b=(cosωx,sinωx)$,其中ω>0,记函数$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$,若函数f(x)的图象相邻两条对称轴之间的距离是$\frac{π}{2}$.
(Ⅰ)求f(x)的表达式;
(Ⅱ)设△ABC三内角A、B、C的对应边分别为a、b、c,若a+b=3,$c=\sqrt{3}$,f(C)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则(∁UA)∪B=(  )
A.{2}B.{3}C.{2,3}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知△ABC的三边长分别为2,3,$\sqrt{7}$,则△ABC的面积S=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{9}$+y2=1,A(-2,0),D(1,0),M为椭圆C上的动点,连接MA并延长交椭圆C于点N,连接MD、ND并分别延长椭圆C于点P、Q.
(Ⅰ)若$\overrightarrow{OM}$⊥x轴(O为坐标原点),试求点P的坐标;
(Ⅱ)设直线MN、PQ的斜率存在且分别为k1、k2,求证:$\frac{{k}_{1}}{{k}_{2}}$=$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为短轴长的$\sqrt{3}$倍.
(1)求椭圆E的离心率;
(2)设椭圆E的焦距为2$\sqrt{2}$,直线l与椭圆E交于P,Q两点,且OP⊥OQ,求证:直线l恒与圆x2+y2=$\frac{3}{4}$相切.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=1+$\frac{a-1}{{{2^x}+1}}$为奇函数,g(x)=$\left\{\begin{array}{l}{alnx,x>0}\\{{e}^{ax},x≤0}\end{array}$,则不等式g(x)>1的解集为(-∞,0)∪(0,e-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在等比数列{an}中,a3=9,9a2+a4=54,求:
(1){an}的通项公式;
(2){an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知四棱锥P-ABCD的顶点都在球O上,底面ABCD是矩形,平面PAD⊥平面ABCD,△PAD为正三角形,AB=4,AD=2,则球O的表面积为(  )
A.$\frac{32π}{3}$B.$\frac{64π}{3}$C.32πD.64π

查看答案和解析>>

同步练习册答案