2£®ÈôÏòÁ¿$\overrightarrow a=£¨\sqrt{3}sin¦Øx£¬sin¦Øx£©£¬\overrightarrow b=£¨cos¦Øx£¬sin¦Øx£©$£¬ÆäÖЦأ¾0£¬¼Çº¯Êý$f£¨x£©=\overrightarrow a•\overrightarrow b-\frac{1}{2}$£¬Èôº¯Êýf£¨x£©µÄͼÏóÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëÊÇ$\frac{¦Ð}{2}$£®
£¨¢ñ£©Çóf£¨x£©µÄ±í´ïʽ£»
£¨¢ò£©Éè¡÷ABCÈýÄÚ½ÇA¡¢B¡¢CµÄ¶ÔÓ¦±ß·Ö±ðΪa¡¢b¡¢c£¬Èôa+b=3£¬$c=\sqrt{3}$£¬f£¨C£©=1£¬Çó¡÷ABCµÄÃæ»ý£®

·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÀûÓÃÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㻯¼ò¿ÉµÃº¯Êý½âÎöʽf£¨x£©=sin£¨2¦Øx-$\frac{¦Ð}{6}$£©£¬ÓÉÌâÒâ¿ÉÖªÆäÖÜÆÚΪ¦Ð£¬ÀûÓÃÖÜÆÚ¹«Ê½¿ÉÇ󦨣¬¼´¿ÉµÃ½âº¯Êý½âÎöʽ£®
£¨¢ò£©ÓÉf£¨C£©=1£¬µÃ$sin£¨2C-\frac{¦Ð}{6}£©=1$£¬½áºÏ·¶Î§0£¼C£¼¦Ð£¬¿ÉµÃ-$\frac{¦Ð}{6}$£¼2C-$\frac{¦Ð}{6}$£¼$\frac{11¦Ð}{6}$£¬½âµÃC=$\frac{¦Ð}{3}$£¬½áºÏÒÑÖªÓÉÓàÏÒ¶¨ÀíµÃabµÄÖµ£¬ÓÉÃæ»ý¹«Ê½¼´¿É¼ÆËãµÃ½â£®

½â´ð £¨±¾ÌâÂú·ÖΪ12·Ö£©
½â£º£¨¢ñ£©¡ß$\overrightarrow a=£¨\sqrt{3}sin¦Øx£¬sin¦Øx£©£¬\overrightarrow b=£¨cos¦Øx£¬sin¦Øx£©$£¬
¡à$f£¨x£©=\overrightarrow a•\overrightarrow b-\frac{1}{2}=\sqrt{3}sin¦Øxcos¦Øx+{sin^2}¦Øx-\frac{1}{2}=sin£¨2¦Øx-\frac{¦Ð}{6}£©$£¬¡­£¨4·Ö£©
ÓÉÌâÒâ¿ÉÖªÆäÖÜÆÚΪ¦Ð£¬
¹Ê¦Ø=1£¬
Ôòf£¨x£©=sin£¨2x-$\frac{¦Ð}{6}$£©£¬¡­£¨6·Ö£©
£¨¢ò£©ÓÉf£¨C£©=1£¬µÃ$sin£¨2C-\frac{¦Ð}{6}£©=1$£¬
¡ß0£¼C£¼¦Ð£¬¡à-$\frac{¦Ð}{6}$£¼2C-$\frac{¦Ð}{6}$£¼$\frac{11¦Ð}{6}$£¬
¡à2C-$\frac{¦Ð}{6}$=$\frac{¦Ð}{2}$£¬½âµÃC=$\frac{¦Ð}{3}$£® ¡­£¨8·Ö£©
ÓÖ¡ßa+b=3£¬$c=\sqrt{3}$£¬ÓÉÓàÏÒ¶¨ÀíµÃc2=a2+b2-2abcos$\frac{¦Ð}{3}$£¬
¡à£¨a+b£©2-3ab=3£¬¼´ab=2£¬
ÓÉÃæ»ý¹«Ê½µÃÈý½ÇÐÎÃæ»ýΪ$\frac{1}{2}absinC=\frac{{\sqrt{3}}}{2}$£®¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÆ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬Èý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óã¬ÖÜÆÚ¹«Ê½£¬ÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÓàÏÒ¶¨Àí£¬Èý½ÇÐÎÃæ»ý¹«Ê½ÔÚ½âÈý½ÇÐÎÖеÄÓ¦Ó㬿¼²éÁËת»¯Ë¼ÏëºÍÊýÐνáºÏ˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®½«Ò»¸ö°ë¾¶Îª3ºÍÁ½¸ö°ë¾¶Îª1µÄÇòÍêȫװÈëµ×Ãæ±ß³¤Îª6µÄÕýËÄÀâÖùÈÝÆ÷ÖУ¬ÔòÕýËÄÀâÖùÈÝÆ÷µÄ¸ßµÄ×îСֵΪ4+$2\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1£¬EÊÇCC1µÄÖе㣬Çó¶þÃæ½ÇD-B1E-BµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÈôanΪ£¨1+x£©nµÄÕ¹¿ªÊ½ÖеÄx2ÏîµÄϵÊý£¬Ôò$\underset{lim}{n¡ú¡Þ}$$\frac{2{a}_{n}}{{n}^{2}+1}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Æ½ÃæÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ60¡ã£¬|$\overrightarrow{a}$|=1£¬$\overrightarrow{b}$=£¨3£¬0£©£¬|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{19}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{y-x¡Ü3}\\{x+y¡Ü5}\\{y¡Ým}\end{array}\right.$£¬Èôz=x+4yµÄ×î´óÖµÓë×îСֵµÃ²îΪ5£¬ÔòʵÊýmµÈÓÚ£¨¡¡¡¡£©
A£®3B£®2C£®-2D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¡¶³ÇÊй滮¹ÜÀíÒâ¼û¡·ÖÐÌá³ö¡°Ð½¨×¡Õ¬Ô­ÔòÉϲ»ÔÙ½¨Éè·â±Õ×¡Õ¬Ð¡Çø£¬Òѽ¨³ÉµÄ×¡Õ¬Ð¡ÇøºÍµ¥Î»´óÔºÖð²½´ò¿ª¡±£¬´ËÏûÏ¢ÔÚÍøÉÏһʯ¼¤Æðǧ²ãÀË£®¸÷ÖÖ˵·¨²»Ò»¶ø×㣬ΪÁËÁ˽â¾ÓÃñ¶Ô¡°¿ª·ÅÐ¡Çø¡±ÈÏͬÓë·ñ£¬´Ó[25£¬55]ËêÈËȺÖÐËæ»ú³éÈ¡ÁËnÈ˽øÐÐÎʾíµ÷²é£¬µÃÈçÏÂÊý¾Ý£º
×éÊý·Ö×éÈÏͬÈËÊýÈÏͬÈËÊýÕ¼
±¾×éÈËÊý±È
µÚÒ»×é[25£¬30£©1200.6
µÚ¶þ×é[30£¬35£©195p
µÚÈý×é[35£¬40£©1000.5
µÚËÄ×é[40£¬45£©a0.4
µÚÎå×é[45£¬50£©300.3
µÚÁù×é[50£¬55£©150.3
£¨1£©Íê³ÉËù¸øÆµÂÊ·Ö²¼Ö±·½Í¼£¬²¢Çón£¬a£¬p£®
£¨2£©Èô´Ó[40£¬45£©£¬[45£¬50£©Á½¸öÄêÁä¶ÎÖеġ°ÈÏͬ¡±ÈËȺÖУ¬°´·Ö²ã³éÑùµÄ·½·¨³é9È˲ÎÓë×ù̸»á£¬È»ºó´ÓÕâ9ÈËÖÐÑ¡2Ãû×÷Ϊ×鳤£¬×鳤ÄêÁäÔÚ[40£¬45£©ÄÚµÄÈËÊý¼ÇΪ¦Î£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁÐºÍÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¼×¡¢ÒÒÁ½ÈËͬʱ²Î¼ÓÒ»´ÎÊýѧ²âÊÔ£¬¹²ÓÐ10µÀÑ¡ÔñÌ⣬ÿÌâ¾ùÓÐ4¸öÑ¡Ï´ð¶ÔµÃ3·Ö£¬´ð´í»ò²»´ðµÃ0·Ö£¬¼×ºÍÒÒ¶¼½â´ðÁËËùÓеÄÊÔÌ⣬¾­±È½Ï£¬ËûÃÇÖ»ÓÐ1µÀÌâµÄÑ¡Ïͬ£¬Èç¹û¼××îÖյĵ÷ÖΪ27·Ö£¬ÄÇôÒÒµÄËùÓпÉÄܵĵ÷ÖÖµ×é³ÉµÄ¼¯ºÏΪ{24£¬27£¬30}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚµÈÑüÖ±½ÇÈý½ÇÐÎABCÖУ¬µãBΪֱ½Ç¶¥µã£¬µãE£¬FÔÚ±ßBCÉÏ£¨EÔÚFµÄ×ó²à£©£¬ÇÒAB=3£¬EF=1£¬tan¡ÏEAF=$\frac{1}{4}$£¬ÔòÏß¶ÎBE³¤Îª$\frac{\sqrt{13}-1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸