分析 由余弦定理可得一内角的余弦值,进而可得正弦值,代入三角形的面积公式计算即可得解.
解答 解:在△ABC中,由题意,不妨设△ABC的三边长分别为a=2,b=3,c=$\sqrt{7}$,
则由余弦定理可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{9+7-4}{2×3×\sqrt{7}}$=$\frac{2\sqrt{7}}{7}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{21}}{7}$,
∴则△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×3×$\sqrt{7}$×$\frac{\sqrt{21}}{7}$=$\frac{3\sqrt{3}}{2}$.
故答案为:$\frac{3\sqrt{3}}{2}$.
点评 本题主要考查了余弦定理和三角形的面积公式,同角三角函数基本关系式在解三角形中的应用,属基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2+y2=1 | B. | x2+y2=4 | ||
| C. | x2+y2=$\frac{16}{5}$ | D. | x2+y2=1或x2+y2=37 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com