| A. | $\frac{{\sqrt{6}}}{4}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{2}+\sqrt{6}}}{4}$ |
分析 如图所示,连接OA,OC,取BC的中点E,连接ME,OE,则∠EMO(或其补角)为异面直线AB与OM所成角.利用余弦定理可得结论.
解答
解:如图所示,连接OA,OC,取BC的中点E,连接ME,OE,则
∠EMO(或其补角)为异面直线AB与OM所成角,
∵O为棱BD的中点,
∴OA⊥BD,
∵平面ABD⊥平面BCD,
∴OA⊥平面BCD.
设AB=2,则EM=EO=1,AO=CO=$\sqrt{3}$,∴OM=$\frac{1}{2}$AC=$\frac{\sqrt{6}}{2}$,
∴异面直线AB与OM所成角的余弦值为$\frac{1+\frac{6}{4}-1}{2×1×\frac{\sqrt{6}}{2}}$=$\frac{\sqrt{6}}{4}$.
故选:A.
点评 本题考查空间角,考查学生的计算能力,确定异面直线AB与OM所成角是关键.
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{OP}$=2x$\overrightarrow{AO}$+3y$\overrightarrow{BO}$+4z$\overrightarrow{CO}$,且2x+3y+4z=1 | B. | $\overrightarrow{OP}$+$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$ | ||
| C. | $\overrightarrow{AP}$=$\overrightarrow{AB}$+3$\overrightarrow{AC}$ | D. | $\overrightarrow{AP}$=2$\overrightarrow{OB}$-$\overrightarrow{OC}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com