分析 (1)由a1,a2,a5成等比数列,可得${a}_{2}^{2}$=a1•a5,即$({a}_{1}+d)^{2}$=a1•(a1+4d),与a10=19=a1+9d,联立解出即可得出.
(2)bn=an2n=(2n-1)•2n,利用“错位相减法”与等比数列的前n项和公式即可得出.
解答 解:(1)∵a1,a2,a5成等比数列,∴${a}_{2}^{2}$=a1•a5,即$({a}_{1}+d)^{2}$=a1•(a1+4d),
∵a10=19=a1+9d,联立解得:a1=1,d=2.
∴an=2n-1.
(2)bn=an2n=(2n-1)•2n,
∴数列{bn}的前n项和Sn=2+3×22+…+(2n-1)•2n,
2Sn=22+3×23+…+(2n-3)•2n+(2n-1)•2n+1,
∴-Sn=2+2(22+23+…+2n)-(2n-1)•2n+1=$2×\frac{2({2}^{n}-1)}{2-1}$-2-(2n-1)•2n+1=(3-2n)•2n+1-6,
∴${S_n}=({2n-3}){2^{n+1}}+6$.
点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 30°或150° | D. | 60°或120° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x(月份) | 1 | 2 | 3 | 4 | 5 |
| y(万盒) | 5 | 5 | 6 | 6 | 8 |
| A. | 8.1万盒 | B. | 8.2万盒 | C. | 8.9万盒 | D. | 8.6万盒 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com