分析 (1)设等差数列{an}的首项为a1,公差为d,由已知列方程组求得首项和公差,代入等差数列的通项公式求得答案;
(2)把(1)中求得的通项公式代入bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,然后利用裂项相消法求得数列{bn}的前n项和Tn.
解答 解:(1)设等差数列{an}的首项为a1,公差为d,
由a5+a6=24,S11=143,
得$\left\{\begin{array}{l}{2{a}_{1}+9d=24}\\{11({a}_{1}+5d)=143}\end{array}\right.$,解得a1=3,d=2.
∴an=3+2(n-1)=2n+1;
(2)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}=\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$,
∴Tn=b1+b2+…+bn=$\frac{1}{2}(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n+1}-\frac{1}{2n+3})$=$\frac{1}{2}(\frac{1}{3}-\frac{1}{2n+3})$=$\frac{n}{6n+9}$.
点评 本题考查等差数列的通项公式,考查了等差数列的前n项和,训练了裂项相消法求数列的前n项和,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 6 | 8 | 10 | 12 |
| y | 6 | m | 3 | 2 |
| A. | 变量x,y之间呈现负相关关系 | |
| B. | m=4 | |
| C. | 可以预测,当x=11时,y=2.6 | |
| D. | 由表格数据知,该回归直线必过点(9,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 0 | 1 | 3 | 4 |
| y | 0.9 | 1.9 | 3.2 | 4.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ②③ | B. | ②③④ | C. | ①③④ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | 1 | C. | $\frac{5}{3}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com