精英家教网 > 高中数学 > 题目详情
14.已知△ABC中,A=45°,a=2,b=$\sqrt{2}$,那么∠B为(  )
A.30°B.60°C.30°或150°D.60°或120°

分析 根据正弦定理,求出sinB的值,再根据b<a得出B<A,即可求出B的值.

解答 解:△ABC中,A=45°,a=2,b=$\sqrt{2}$,
由正弦定理得,$\frac{a}{sinA}$=$\frac{b}{sinB}$,
∴sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}sin45°}{2}$=$\frac{1}{2}$;
又b<a,
∴B<A,
∴B=30°.
故选:A.

点评 本题考查了正弦定理的简单应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若|$\overrightarrow{a}$|=3,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=3,则|$\overrightarrow{b}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=2acosθ+b+1的最大值为4,最小值为-1,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,多面体ABCDEF中,BA,BC,BE两两垂直,且AB∥EF,CD∥BE,AB=BE=2,BC=CD=EF=1.
(I)若点G在线段AB上,且BG=3GA,求证:CG∥平面ADF;
(II)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P是侧棱CC1上的一点,CP=m.
(Ⅰ)试确定m,使直线AP与平面BDD1B1所成角的正切值为3$\sqrt{2}$;
(Ⅱ)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q垂直于AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店A店B店C店
售价x(元)808682888490
销售量y(件)887885758266
(1)以三家连锁店分别的平均售价和平均销量为散点,求出售价与销量的回归直线方程$\widehaty=\widehatbx+\widehata$;
(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?$\left\{\begin{array}{l}\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \widehata=\overline y-\widehatb\overline x\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和Sn=$\frac{{{n^2}+n}}{2}$,数列{bn}的通项为bn=f(n),且f(n)满足:①f(1)=$\frac{1}{2}$;②对任意正整数m,n,都有f(m+n)=f(m)f(n)成立.
(1)求an与bn
(2)设数列{anbn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知变量x,y之间的线性回归方程为$\widehat{y}$=-0.7x+10.3,且变量x,y之间的一组相关数据如表所示,则下列说法错误的是(  )
x681012
y6m32
A.变量x,y之间呈现负相关关系
B.m=4
C.可以预测,当x=11时,y=2.6
D.由表格数据知,该回归直线必过点(9,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}中,a10=19公差d≠0,且a1,a2,a5成等比数列.
(1)求an
(2)设bn=an2n,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案