精英家教网 > 高中数学 > 题目详情
11.异面直线a,b所成的角60°,直线a⊥c,则直线b与c所成的角的范围为(  )
A.[$\frac{π}{6}$,$\frac{π}{2}$]B.[$\frac{π}{3}$,$\frac{π}{2}$]C.[$\frac{π}{6}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{2π}{3}$]

分析 作b的平行线b′,交a于O点,在直线b′上取一点P,作PP'⊥平面α,交平面α于P',∠POP'是b′与面α的夹角,在平面α所有与OP'垂直的线与b'的夹角为$\frac{π}{2}$,由此能求出直线b与c所成的角的范围.

解答 解:作b的平行线b′,交a于O点,
所有与a垂直的直线平移到O点组成一个与直线a垂直的平面α,
O点是直线a与平面α的交点,
在直线b′上取一点P,作垂线PP'⊥平面α,交平面α于P',
∠POP'是b′与面α的夹角,为$\frac{π}{6}$.
在平面α中,所有与OP'平行的线与b′的夹角都是$\frac{π}{6}$.
由于PP'垂直于平面α,所以该线垂直与PP′,
则该线垂直于平面OPP',所以该线垂直与b',
故在平面α所有与OP'垂直的线与b'的夹角为$\frac{π}{2}$,
与OP'夹角大于0,小于$\frac{π}{2}$的线,与b'的夹角为锐角且大于$\frac{π}{6}$.
故选:A.

点评 本题考查异面直线所成角的取值范围的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求二项式(${\sqrt{x}$+$\frac{2}{x^2}}$)8的展开式中:求:
(1)二项式系数最大的项;
(2)系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=($\sqrt{3}$xinωx+cosωx)cosωx-$\frac{1}{2}$,其中ω>0,若f(x)的最小正周期为4π.
(1)求函数f(x)的单调递增区间;
(2)锐角三角形ABC中,(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.坐标原点和点(1,-1)在直线x-y+a=0的两侧,则实数a的取值范围是(-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+1,设bn=an+1-2an.证明:数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x,y满足约束条件$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}≤a}\\{x≥0.y≥0}\end{array}\right.$,若z=$\frac{x+2y+3}{x+1}$的最小值为$\frac{3}{2}$,则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)与g(x)=($\frac{1}{2}$)x互为反函数,则函数f(4-x2)的单调增区间是(  )
A.(-∞,0]B.[0,+∞)C.(-2,0]D.[0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.集合A={a,b,c,d,e},B={d,f,g},则A∩B={d}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
①$\sqrt{\frac{25}{9}}$-($\frac{8}{27}$)${\;}^{\frac{1}{3}}$-(π+e)0+($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$;
②(lg2)2+lg2lg5+$\sqrt{(lg2)^{2}-lg4+1}$.

查看答案和解析>>

同步练习册答案