精英家教网 > 高中数学 > 题目详情
16.将全体正整数排成一个三角形数阵:按照以上的排列规律,第20行第2个数是192.

分析 前n-1行共有正整数1+2+…+(n-1)个,由此能求出第20行第2个数.

解答 解:前n-1行共有正整数1+2+…+(n-1)个,
即$\frac{n(n-1)}{2}$=$\frac{{n}^{2}-n}{2}$个,
因此第20行第3个数是全体正整数中第$\frac{2{0}^{2}-20}{2}$+2=192个,
∴第20行第2个数是192.
故答案为:192.

点评 本小题考查归纳推理和等差数列求和公式,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.23000的末两位数是(  )
A.46B.56C.66D.76

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2-3x,且f(x)在x=-1处取得极值.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0,5]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}中,an=$\frac{1}{(n+1)^{2}}$,记f(n)=(1-a1)(1-a2)…(1-an),试计算f(1),f(2),f(3)的值,推测f(n)的表达式为f(n)=$\frac{n+2}{2(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是(  )
A.若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误
C.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病
D.以上三种说法都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{1}{2}$,且点$(1,\frac{3}{2})$在椭圆上,
(1)求椭圆C的方程;
(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM,AN的斜率k1,k2满足k1+k2=-1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x、y、z满足x2+2y2+3z2=4,设T=xy+yz,则T的取值范围是(  )
A.[$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$]B.[$-\frac{\sqrt{6}}{6}$,$\frac{2\sqrt{6}}{3}$]C.[$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{3}}{3}$]D.[$-\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对于集合{a1,a2,…,an}和常数a0,定义:w=$\frac{sin({a}_{1}-{a}_{0})^{2}+sin({a}_{2}-{a}_{0})^{2}+…+sin({a}_{n}-{a}_{0})^{2}}{n}$为集合{a1,a2,…,an}相对于a0的“正弦方差”,则集合{$\frac{π}{2}$,$\frac{5π}{6}$,$\frac{7π}{6}$}相对a0的“正弦方差”为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{a}_{0}}{4}$D.$\frac{{a}_{0}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.以下四个命题中,真命题的个数是(  )
①“若a+b≥2,则a,b中至少有一个不小于1”的逆命题
②?α0,β0∈R,使得sin(α00)=sinα0+sinβ0
③若a∈R,则“$\frac{1}{a}$<1”是“a>1”的必要不充分条件24
④命题“?x0∈R,x02+2x0+3<0”的否定是“?x∈R,x2+2x+3>0”
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案