精英家教网 > 高中数学 > 题目详情
1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{1}{2}$,且点$(1,\frac{3}{2})$在椭圆上,
(1)求椭圆C的方程;
(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM,AN的斜率k1,k2满足k1+k2=-1,求直线l的方程.

分析 (1)由椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{1}{2}$,且点$(1,\frac{3}{2})$在椭圆上,可得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解出即可;
(2)由(1)可得:左顶点A(-2,0),右焦点(1,0).由题意可知直线l不存在时不满足条件,可设直线l的方程为y=k(x-1),M(x1,y1),N(x2,y2).与椭圆的方程联立可得根与系数的关系,再利用斜率计算公式可得k1+k2=-1,$\frac{{y}_{1}}{{x}_{1}+2}+\frac{{y}_{2}}{{x}_{2}+2}$=-1,代入化简整理即可得出.

解答 解:(1)∵椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{1}{2}$,且点$(1,\frac{3}{2})$在椭圆上,
∴$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,∴椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(2)由(1)可得:左顶点A(-2,0),右焦点(1,0).
由题意可知直线l不存在时不满足条件,可设直线l的方程为y=k(x-1),M(x1,y1),N(x2,y2).
联立椭圆方程,化为(3+4k2)x2-8k2x+4k2-12=0.由题意可得△>0.
∴x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$.
∵k1+k2=-1,∴$\frac{{y}_{1}}{{x}_{1}+2}+\frac{{y}_{2}}{{x}_{2}+2}$=-1,
化为k(x1-1)(x2+2)+k(x2-1)(x1+2)+(x1+2)(x2+2)=0,
整理为(2k+1)x1x2+(k+2)(x1+x2)+4-4k=0.
代入整理为k2-k=0,解得k=0或1.
k=0不满足题意,应舍去.
故k=1,此时直线l的方程为y=x-1.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、斜率计算公式等基础知识与基本技能方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}{x^2}$-lnx.
(1)求函数f(x)的极值;
(2)求函数f(x)在[1,e]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正整数数列{an}满足a2=4,且对任意n∈N*,有2+$\frac{1}{{{a_{n+1}}}}$<$\frac{{\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}}}{{\frac{1}{n}-\frac{1}{n+1}}}$<2+$\frac{1}{a_n}$
(1)求a1,a3,并猜想数列{an}的通项公式;
(2)由(1)的猜想,设数列{$\frac{1}{a_n}$}的前n项和为Sn,求证:Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.方程a+b+c+d=8的正整数解(a,b,c,d)有35组.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将全体正整数排成一个三角形数阵:按照以上的排列规律,第20行第2个数是192.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=$\frac{1}{3}{x^3}$-x在区间(a2-26,a)上有最大值,则实数a的取值范围为(  )
A.(-1,5)B.(-1,5]C.(-1,2)D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.确定函数y=x+$\frac{1}{x}$(x>0)在区间(1,+∞)的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}中,a1=1,函数f(x)=-$\frac{2}{3}$x3+$\frac{a_n}{2}$x2-3an-1x+4在x=1处取得极值,则an=2•3n-1-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$a={2^{\frac{6}{5}}},b={({\frac{1}{8}})^{-\frac{4}{5}}},c=2{log_5}2$,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

同步练习册答案