分析 可设任意的x1>x2>1,然后作差,通分,提取公因式,从而可得出y1>y2,这样即得出函数$y=x+\frac{1}{x}$在区间(1,+∞)上的单调性.
解答 解:设x1>x2>1,则:
${y}_{1}-{y}_{2}={x}_{1}+\frac{1}{{x}_{1}}-{x}_{2}-\frac{1}{{x}_{2}}$=$({x}_{1}-{x}_{2})(1-\frac{1}{{x}_{1}{x}_{2}})$;
∵x1>x2>1;
∴x1-x2>0,$\frac{1}{{x}_{1}{x}_{2}}<1,1-\frac{1}{{x}_{1}{x}_{2}}>0$;
∴$({x}_{1}-{x}_{2})(1-\frac{1}{{x}_{1}{x}_{2}})>0$;
∴y1>y2;
∴$y=x+\frac{1}{x}$在区间(1,+∞)上单调递增.
点评 考查函数单调性的定义,以及根据函数单调性定义判断和证明一个函数单调性的方法和过程.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$] | B. | [$-\frac{\sqrt{6}}{6}$,$\frac{2\sqrt{6}}{3}$] | C. | [$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{3}}{3}$] | D. | [$-\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,1) | B. | (-∞,-2)U(2,+∞) | C. | (-2,2) | D. | (-∞,-2)U(-1,1)U(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{a}_{0}}{4}$ | D. | $\frac{{a}_{0}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,x2-4≥0或x2-4x≤0 | B. | ?x∈R,x2-4≥0且x2-4x≤0 | ||
| C. | ?x∈R,x2-4≥0或x2-4x≤0 | D. | ?x∈R,x2-4≥0且x2-4x≤0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com