12£®ÒÑÖªÕýÕûÊýÊýÁÐ{an}Âú×ãa2=4£¬ÇÒ¶ÔÈÎÒân¡ÊN*£¬ÓÐ2+$\frac{1}{{{a_{n+1}}}}$£¼$\frac{{\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}}}{{\frac{1}{n}-\frac{1}{n+1}}}$£¼2+$\frac{1}{a_n}$
£¨1£©Çóa1£¬a3£¬²¢²ÂÏëÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÓÉ£¨1£©µÄ²ÂÏ룬ÉèÊýÁÐ{$\frac{1}{a_n}$}µÄǰnÏîºÍΪSn£¬ÇóÖ¤£ºSn£¼2£®

·ÖÎö £¨1£©¶ÔÈÎÒân¡ÊN*£¬ÓÐ2+$\frac{1}{{{a_{n+1}}}}$£¼$\frac{\frac{1}{{a}_{n}}+\frac{1}{{a}_{n+1}}}{\frac{1}{n}-\frac{1}{n+1}}$£¼2+$\frac{1}{a_n}$£¬¿ÉµÃn=1ʱ£¬$2+\frac{1}{{a}_{2}}$£¼2$£¨\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}£©$$£¼2+\frac{1}{{a}_{1}}$£¬»¯Îª£º$\frac{2}{3}£¼{a}_{1}£¼\frac{8}{7}$£¬ÓÉa1ÊÇÕýÕûÊý£¬¿ÉµÃa1=1£®µ±n=2ʱ£¬¿ÉµÃ£º8£¼a3£¼10£¬¿ÉµÃa3=9£¬²ÂÏëan=n2£®
£¨2£©ÓÉ$\frac{1}{{a}_{n}}$=$\frac{1}{{n}^{2}}$£¬µ±n¡Ý2ʱ£¬$\frac{1}{{a}_{n}}$¡Ü$\frac{1}{£¨n-1£©n}$=$\frac{1}{n-1}-\frac{1}{n}$£¬ÀûÓá°ÁÑÏîÇóºÍ¡±·½·¨¼´¿ÉµÃ³ö£®

½â´ð £¨1£©½â£º¶ÔÈÎÒân¡ÊN*£¬ÓÐ2+$\frac{1}{{{a_{n+1}}}}$£¼$\frac{\frac{1}{{a}_{n}}+\frac{1}{{a}_{n+1}}}{\frac{1}{n}-\frac{1}{n+1}}$£¼2+$\frac{1}{a_n}$£¬¿ÉµÃn=1ʱ£¬$2+\frac{1}{{a}_{2}}$£¼2$£¨\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}£©$$£¼2+\frac{1}{{a}_{1}}$£¬¡à$2+\frac{1}{4}$$£¼2£¨\frac{1}{{a}_{1}}+\frac{1}{4}£©$$£¼2+\frac{1}{{a}_{1}}$£¬»¯Îª£º$\frac{2}{3}£¼{a}_{1}£¼\frac{8}{7}$£¬¡ßa1ÊÇÕýÕûÊý£¬¡àa1=1£®
µ±n=2ʱ£¬¿ÉµÃ£º8£¼a3£¼10£¬¿ÉµÃa3=9£¬²ÂÏëan=n2£®
£¨2£©¡ß$\frac{1}{{a}_{n}}$=$\frac{1}{{n}^{2}}$£¬µ±n¡Ý2ʱ£¬$\frac{1}{{a}_{n}}$¡Ü$\frac{1}{£¨n-1£©n}$=$\frac{1}{n-1}-\frac{1}{n}$£¬
¡àSn=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+¡­+$\frac{1}{{a}_{n}}$¡Ü1+$£¨1-\frac{1}{2}£©$+$£¨\frac{1}{2}-\frac{1}{3}£©$+¡­+$£¨\frac{1}{n-1}-\frac{1}{n}£©$=2-$\frac{1}{n}$£¼2£®
¡àSn£¼2£®

µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆ¹ØÏµ¡¢¡°ÁÑÏîÇóºÍ¡±·½·¨¡¢·ÅËõ·¨¡¢²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=|a2x2-1|+ax£¬£¨ÆäÖÐa¡ÊR£¬a¡Ù0£©£®
£¨1£©µ±a£¼0ʱ£¬Èôº¯Êýy=f£¨x£©-cÇ¡ÓÐx1£¬x2£¬x3£¬x4Õâ4¸öÁãµã£¬Çóx1+x2+x3+x4µÄÖµ£»
£¨2£©µ±x¡Ê[-1£¬1]ʱ£¬Çóº¯Êýy=f£¨x£©£¨ÆäÖÐa£¼0£©µÄ×î´óÖµM£¨a£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÉÏÒ»µãA¹ØÓÚÔ­µãµÄ¶Ô³ÆµãΪµãB£¬FΪÆäÓÒ½¹µã£¬ÈôAF¡ÍBF£¬Éè¡ÏABF=¦Á£¬ÇÒ¦Á¡Ê[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{4}$]£¬Ôò¸ÃÍÖÔ²ÀëÐÄÂÊeµÄȡֵ·¶Î§Îª$[\frac{{\sqrt{2}}}{2}£¬\sqrt{3}-1]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÏòÁ¿$\overrightarrow m$=£¨$\sqrt{3}sin\frac{x}{4}$£¬1£©£¬$\overrightarrow n$=£¨cos$\frac{x}{4}$£¬${cos^2}\frac{x}{4}$£©£¬¼Çf£¨x£©=$\overrightarrow m•\overrightarrow n$£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×îСÕýÖÜÆÚºÍµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©½«º¯Êýy=f£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{2¦Ð}{3}$¸öµ¥Î»µÃµ½y=g£¨x£©µÄͼÏó£¬ÌÖÂÛº¯Êýy=g£¨x£©-kÔÚ$[0£¬\frac{7¦Ð}{3}]$µÄÁãµã¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{3}$x3-$\frac{1}{2}$ax2-3x£¬ÇÒf£¨x£©ÔÚx=-1´¦È¡µÃ¼«Öµ£®
£¨¢ñ£©ÇóaµÄÖµ£»
£¨¢ò£©Çóf£¨x£©ÔÚ[0£¬5]ÉϵÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÅ×ÎïÏßCµÄ¶¥µãÔÚ×ø±êÔ­µãO£¬ÆäͼÏó¹ØÓÚyÖá¶Ô³ÆÇÒ¾­¹ýµãM£¨2£¬1£©£®
£¨1£©ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©ÈôÒ»¸öµÈ±ßÈý½ÇÐεÄÒ»¸ö¶¥µãλÓÚ×ø±êÔ­µã£¬ÁíÁ½¸ö¶¥µãÔÚÅ×ÎïÏßÉÏ£¬Çó¸ÃµÈ±ßÈý½ÇÐεÄÃæ»ý£»
£¨3£©¹ýµãM×÷Å×ÎïÏßCµÄÁ½ÌõÏÒMA£¬MB£¬ÉèMA£¬MBËùÔÚÖ±ÏßµÄбÂÊ·Ö±ðΪk1£¬k2£¬µ±k1k2=-2ʱ£¬ÊÔÖ¤Ã÷Ö±ÏßABºã¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªÊýÁÐ{an}ÖУ¬an=$\frac{1}{£¨n+1£©^{2}}$£¬¼Çf£¨n£©=£¨1-a1£©£¨1-a2£©¡­£¨1-an£©£¬ÊÔ¼ÆËãf£¨1£©£¬f£¨2£©£¬f£¨3£©µÄÖµ£¬ÍƲâf£¨n£©µÄ±í´ïʽΪf£¨n£©=$\frac{n+2}{2£¨n+1£©}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{1}{2}$£¬ÇÒµã$£¨1£¬\frac{3}{2}£©$ÔÚÍÖÔ²ÉÏ£¬
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªAΪÍÖÔ²CµÄ×󶥵㣬ֱÏßl¹ýÓÒ½¹µãF2ÓëÍÖÔ²C½»ÓÚM£¬NÁ½µã£¬ÈôAM£¬ANµÄбÂÊk1£¬k2Âú×ãk1+k2=-1£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªSnÊǵȱÈÊýÁеÄǰnÏîºÍ£¬S4¡¢S2¡¢S3³ÉµÈ²îÊýÁУ¬ÇÒa2+a3+a4=-18£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{nan}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸