精英家教网 > 高中数学 > 题目详情
6.若函数f(x)=$\frac{1}{3}{x^3}$-x在区间(a2-26,a)上有最大值,则实数a的取值范围为(  )
A.(-1,5)B.(-1,5]C.(-1,2)D.(-1,2]

分析 求函数f(x)的导数,研究其最大值取到的位置,由于函数在区间(a2-26,a)上有最大值,故最大值点的横坐标是集合(a2-26,a)的元素,由此可以得到关于参数a的等式,解之求得实数a的取值范围.

解答 解:由题 f'(x)=x2-1,
令f'(x)<0解得-1<x<1;令f'(x)>0解得x<-1或x>1
由此得函数在(-∞,-1)上是增函数,在(-1,1)上是减函数,在(1,+∞)上是增函数
故函数在x=-1处取到极大值$\frac{2}{3}$,判断知此极大值必是区间(a2-26,a)上的最大值
∴a2-26<-1<a,解得-1<a<5,
又当x=a时,f(a)=$\frac{1}{3}{a}^{3}-a≤\frac{2}{3}$,故有a≤-2或-1≤a≤2.
综上知a∈(-1,2].
故选:D.

点评 本题考查用导数研究函数的最值,利用导数研究函数的最值是导数作为数学中工具的一个重要运用,要注意把握其作题步骤,求导,确定单调性,得出最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1和直线C2的极坐标方程分别为ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求圆C1和直线C2的直角坐标方程.
(2)求圆C1和直线C2交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C的顶点在坐标原点O,其图象关于y轴对称且经过点M(2,1).
(1)求抛物线C的方程;
(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;
(3)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2,当k1k2=-2时,试证明直线AB恒过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.随机调查高河镇某社区80个人,以研究这一社区居民在20:00--22:00时间段的休闲方式与性别的关系,得到下面的数据表:
休闲方式
性别
看电视看书合计
105060
101020
合计206080
(1)从这80人中按照性别进行分层抽样,抽出4人,则男女应各抽取多少人;
(2)从第(1)问抽取的4位居民中随机抽取2位,恰有1男1女的概率是多少;
(3)由以上数据,能否有99%的把握认为在20:00-22:00时间段的休闲方式与性别有关系.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{1}{2}$,且点$(1,\frac{3}{2})$在椭圆上,
(1)求椭圆C的方程;
(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM,AN的斜率k1,k2满足k1+k2=-1,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,A=60°,且$\frac{c}{b}$=$\frac{4}{3}$,则sinC=$\frac{2\sqrt{39}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x≥0)}\\{2x{-x}^{2}(x<0)}\end{array}\right.$,函数g(x)=|f(x)|-1,若g(2-a2)>g(a),则实数a的取值范围是(  )
A.(-2,1)B.(-∞,-2)U(2,+∞)C.(-2,2)D.(-∞,-2)U(-1,1)U(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在正项等差数列{an}中,a12=2a5-a9,且a5+a6+a7=18,则(  )
A.a1,a2,a3成等比数列B.a2,a3,a6成等比数列
C.a3,a4,a8成等比数列D.a4,a6,a9成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{x^2},x<3\\{2^x},x≥3\end{array}$,则f(f(2))=(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案