分析 设正三角形ABC的边长为2a,顶点A是(0,2),并且且高在y轴上,即有B(-a,2-$\sqrt{3}$a),C(b,2-$\sqrt{3}$a),
再结合点B在椭圆上,代入椭圆方程,解关于a的方程,即可得到所求边长.
解答 解:设正三角形ABC的边长为2a,
顶点A是(0,2),并且且高在y轴上,
即有B(-a,2-$\sqrt{3}$a),C(b,2-$\sqrt{3}$a),
因为点B在椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上,所以有$\frac{{a}^{2}}{9}$+$\frac{(2-\sqrt{3}a)^{2}}{4}$=1,
解得a=$\frac{36\sqrt{3}}{31}$,
即有2a=$\frac{72\sqrt{3}}{31}$.
故答案为:$\frac{72\sqrt{3}}{31}$.
点评 本题主要考查椭圆的几何性质,考查学生的计算能力与分析问题解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com