精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x3-3x2-9x+11.
(1)写出函数的单调递减区间;
(2)求函数的极值.

分析 (1)由f(x)=x3-3x2-9x+11,知f′(x)=3x2-6x-9=3(x+1)(x-3),由f′(x)=3(x+1)(x-3)<0,能求出函数f(x)的递减区间.
(2)由f(x)=x3-3x2-9x+11,知f′(x)=3x2-6x-9=3(x+1)(x-3),由f′(x)=3(x+1)(x-3)=0,得x1=-1,x2=3.列表讨论,能求出函数f(x)的极大值和极小值.

解答 解:(1)∵f(x)=x3-3x2-9x+11,
∴f′(x)=3x2-6x-9=3(x+1)(x-3),
由f′(x)=3(x+1)(x-3)<0,得-1<x<3.
∴函数f(x)的递减区间是(-1,3).
(2)∵f(x)=x3-3x2-9x+11,
∴f′(x)=3x2-6x-9=3(x+1)(x-3),
由f′(x)=3(x+1)(x-3)=0,得x1=-1,x2=3.
列表讨论:

 x (-∞,-1)-1 (-1,3) 3(3,+∞) 
 f′(x)+ 0- 0+
 f(x)递增 极大值递减 极小值递增
∴当x=-1时,函数取得极大值f(-1)=-1-3+9+11=16;
当x=3时,函数取得极小值f(3)=27-27-27+11=-16.

点评 本题考查函数的单调递减区间的求法,考查函数的极值的求法.解题时要认真审题,仔细解答,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1.x≤0}\\{1,x>0}\end{array}\right.$,试求满足f(1-x2)>f(-2x)的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}满足3a1+32a2+…+3nan=$\frac{{n}^{2}+pn}{2}$(n∈N*,p∈R)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{an}的前n项和为Sn,若对于任意的n∈N*,都有Sn<$\frac{5}{4}$成立,求证实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex+ax,其中e为自然对数的底数,a为常数.
(I)若函数f(x)存在极小值,且极小值为0,求a的值;
(Ⅱ)若对任意 x∈[0,$\frac{π}{2}}$],不等式 f(x)-2ax≥ex(1-sinx)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=alnx+x在x=1处取到极值,则a的值为(  )
A.$\frac{1}{2}$B.0C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,A为椭圆与y轴的一个交点,△ABC为椭圆的内接正三角形,则△ABC的边长为$\frac{72\sqrt{3}}{31}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求证:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)求点C到平面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,P到F1的距离的最大值为3.
(1)求椭圆的方程;
(2)过点F1的直线交椭圆与A、B两点,求当三角形ABF2的面积最大时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为(  )
A.56B.54C.53D.52

查看答案和解析>>

同步练习册答案