分析 (1)由f(x)=x3-3x2-9x+11,知f′(x)=3x2-6x-9=3(x+1)(x-3),由f′(x)=3(x+1)(x-3)<0,能求出函数f(x)的递减区间.
(2)由f(x)=x3-3x2-9x+11,知f′(x)=3x2-6x-9=3(x+1)(x-3),由f′(x)=3(x+1)(x-3)=0,得x1=-1,x2=3.列表讨论,能求出函数f(x)的极大值和极小值.
解答 解:(1)∵f(x)=x3-3x2-9x+11,
∴f′(x)=3x2-6x-9=3(x+1)(x-3),
由f′(x)=3(x+1)(x-3)<0,得-1<x<3.
∴函数f(x)的递减区间是(-1,3).
(2)∵f(x)=x3-3x2-9x+11,
∴f′(x)=3x2-6x-9=3(x+1)(x-3),
由f′(x)=3(x+1)(x-3)=0,得x1=-1,x2=3.
列表讨论:
| x | (-∞,-1) | -1 | (-1,3) | 3 | (3,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | 递增 | 极大值 | 递减 | 极小值 | 递增 |
点评 本题考查函数的单调递减区间的求法,考查函数的极值的求法.解题时要认真审题,仔细解答,注意导数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 0 | C. | $-\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 56 | B. | 54 | C. | 53 | D. | 52 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com