精英家教网 > 高中数学 > 题目详情
11.函数f(x)=alnx+x在x=1处取到极值,则a的值为(  )
A.$\frac{1}{2}$B.0C.$-\frac{1}{2}$D.-1

分析 求导f′(x)=$\frac{a}{x}$+1,从而令f′(1)=a+1=0得a=-1;检验即可.

解答 解:∵f(x)=alnx+x,
∴f′(x)=$\frac{a}{x}$+1,
令f′(1)=a+1=0得,
a=-1;
经检验,函数f(x)=-lnx+x在x=1处取到极小值,
故选D.

点评 本题考查了导数的基本运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.甲乙两同学相约游玩某一个景区,进景区前了解到景区共有6个景点,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时.
(1)如果6个景点中有4个人文景观和2个自然景观,求甲同学至少游览一个自然景观的概率.
(2)求他们最后一小时在同一个景点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)设AB=2,若H为PD上的动点,EH与平面PAD所成最大角的正切值为$\frac{\sqrt{6}}{2}$,
①求异面直线PB与AD所成角的正弦值;
②求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.
(Ⅰ)求证:AM∥平面PCD;
(Ⅱ)设点N是线段CD上一动点,当直线MN与平面PAB所成的角最大时,求二面角P-BN-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆W:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F(-1,0)斜率不为0的直线l过F交椭圆W于A,B,当l⊥x轴时,|AB|=$\frac{8\sqrt{5}}{5}$.
(Ⅰ)求椭圆W的方程
(Ⅱ)在x轴找一点P,使得∠APF=∠BPF
(Ⅲ)能否在x轴找一点Q,使得$\overrightarrow{QA}$•$\overrightarrow{QB}$为定值,若能找到,求出点Q的坐标,若不能找到,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3-3x2-9x+11.
(1)写出函数的单调递减区间;
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,三棱锥P-ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,点F在PA上,且2PF=FA.
(1)求证:BE⊥平面PAC;
(2)求点E到平面PBF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的四个顶点所构成的菱形的边长是$\sqrt{5}$,面积是4,圆R:(x-4)2+y2=r2(6>r>2)与椭圆C交于点M与点N,连接RM并延长交椭圆于点P.
(1)求椭圆C的方程;
(2)设椭圆的右顶点为A,当$\overrightarrow{AM}•\overrightarrow{AN}$取最小值时,求r的值;
(3)试问,当r变化时,直线NP是否与x轴交于一个定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=f(x),x∈N,如果存在一个函数y=g(x),x∈N,且满足f(n)=g(n+1)-g(n),n∈N,那么有:f(1)+f(2)+…+f(n)=g(n+1)-g(1).
(1)当f(n)=$\frac{1}{n(n+1)}$时,请给出相应的g(n),并求f(1)+f(2)+…+f(100)的值;
(2)当f(n)=2n时,请给出相应的g(n),并求f(1)+f(2)+…+f(100)的值.

查看答案和解析>>

同步练习册答案