分析 根据椭圆的标准方程,结合焦点坐标和准线方程的公式,可得|FG|=a-c,|OH|=$\frac{{a}^{2}}{c}$,则$\frac{FG}{OH}$=$\frac{a-c}{\frac{{a}^{2}}{c}}=\frac{ac-{c}^{2}}{{a}^{2}}$=$\frac{c}{a}-(\frac{c}{a})^{2}$,配方后利用二次函数的性质求出使$\frac{FG}{OH}$取得最大值时的$\frac{c}{a}$的值,则a可求.
解答 解:∵椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{3}=1(a>\sqrt{3})$,
∴椭圆的左焦点是F(-c,0),左顶点是G(-a,0),左准线方程为x=$-\frac{{a}^{2}}{c}$,其中c2=a2-3.
由此可得H($-\frac{{a}^{2}}{c}$,0),|FG|=a-c,|OH|=$\frac{{a}^{2}}{c}$,
∴$\frac{FG}{OH}$=$\frac{a-c}{\frac{{a}^{2}}{c}}=\frac{ac-{c}^{2}}{{a}^{2}}$=$\frac{c}{a}-(\frac{c}{a})^{2}$=-$(\frac{c}{a}-\frac{1}{2})^{2}+\frac{1}{4}$,
∵$\frac{c}{a}$∈(0,1),
∴当且仅当$\frac{c}{a}$=$\frac{1}{2}$时,$\frac{FG}{OH}$取得最大值为$\frac{1}{4}$,此时$\frac{{c}^{2}}{{a}^{2}}=\frac{{a}^{2}-3}{{a}^{2}}=\frac{1}{4}$,解得a=2.
故答案为:2.
点评 本题根据椭圆的焦点坐标和准线方程,求线段比值的最大值,着重考查了椭圆的基本概念的简单性质,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | $\frac{1}{6}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A与C互斥 | B. | A、B、C中任何两个均互斥 | ||
| C. | B与C互斥 | D. | A、B、C中任何两个均不互斥 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞) | B. | (-∞,-1) | C. | R | D. | (-1,1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{3}$ | B. | -$\frac{1}{9}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{10}}{3}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com