精英家教网 > 高中数学 > 题目详情
17.过双曲线C:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{{b}^{2}}=1$的右顶点A作斜率为l的直线l,若l与双曲线C的两条渐近线分别相交于点M,N,且|AM|=|MN|,则双曲线C的离心率是(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{10}}{3}$D.$\sqrt{10}$

分析 先由双曲线线方程可得A的坐标和直线l的方程与双曲线的渐近线联立求得B和C的横坐标,进而根据|AM|=|MN|求得b的值,进而根据c=$\sqrt{{a}^{2}+{b}^{2}}$求得c,最后根据离心率公式答案可得.

解答 解:由题可知A(2,0),
所以直线l的方程为y=x-2.
两条渐近线方程为y=-$\frac{b}{2}$x或y=$\frac{b}{2}$x
联立y=x-2和y=-$\frac{b}{2}$x得M的横坐标为xM=$\frac{4}{2+b}$,
同理得N的横坐标为xN=$\frac{4}{2-b}$.
∵|AM|=|MN|,
∴M为AN中点,
有2xM=xA+xN
即有2×$\frac{4}{2+b}$=2+$\frac{4}{2-b}$.
解得b=6或0(舍去0).
∴c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{4+36}$=2$\sqrt{10}$,
∴e=$\frac{c}{a}$=$\frac{2\sqrt{10}}{2}$=$\sqrt{10}$.
故选:D.

点评 本题考题双曲线性质的综合运用,解题过程中要注意根与系数的关系的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x轴上,若曲线C经过点P(1,2),则其焦点到准线的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<0)的图象的最高点为($\frac{3π}{8}$,$\sqrt{2}$),其图象的相邻两个对称中心之间的距离为$\frac{π}{2}$,则φ=(  )
A.$-\frac{π}{3}$B.$-\frac{π}{4}$C.$-\frac{π}{6}$D.$-\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{3}=1(a>\sqrt{3})$的中心、左焦点、左顶点、左准线与x轴的交点依次为O,F,G,H,则$\frac{FG}{OH}$取得最大值时a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.三棱锥P-ABC中,PA=2,BC=3,PA⊥BC,如图所示,作与PA、BC都平行的截面,分别交棱PB、BC、AC、AB于点E、F、G、H,则截面EFGH的最大面积为(  )
A.3B.6C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法正确的是(  )
A.如果一条直线与一个平面内的无数条直线平行,则这条直线与这个平面平行
B.两个平面相交于唯一的公共点
C.如果一条直线与一个平面有两个不同的公共点,则它们必有无数个公共点
D.平面外的一条直线必与该平面内无数条直线平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中正确的个数是(  )
①若$\overrightarrow{a}$为单位向量,且$\overrightarrow{b}$∥$\overrightarrow{a}$,|$\overrightarrow{b}$|=1,则$\overrightarrow{a}$=$\overrightarrow{b}$;
②若k∈R,则k$\overrightarrow{0}$=0;
③若$\overrightarrow{b}$∥$\overrightarrow{a}$,则|$\overrightarrow{b}$|=|$\overrightarrow{a}$|;
④若k$\overrightarrow{a}$=$\overrightarrow{0}$,则必有k=0(k∈R);
⑤若|$\overrightarrow{a}$|=0,则$\overrightarrow{a}$=0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)试判断函数f(x)=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$的奇偶性.
(2)已知关于x的函数g(x)=log${\;}_{\frac{1}{2}}$(x2-ax+3a),其中a是实常数.若g(x)在区间[2,+∞)上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知A(1,1),B(2,4),则直线AB的斜率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案