分析 (1)由函数的解析式可得函数的定义域为{x|x≠0},关于原点对称.再根据f(-x)=-f(x),可得f(x)为奇函数.
(2)由题意可得h(x)=x2-ax+3a在区间[2,+∞)上是增函数,且h(x)=x2-ax+3a>0恒成立,故有$\left\{\begin{array}{l}{\frac{a}{2}≤2}\\{h(2)4-2a+3a>0}\end{array}\right.$,由此求得实数a的取值范围.
解答 解:(1)∵函数f〔x)=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$,∴2x-1≠0,即函数的定义域为{x|x≠0},关于原点对称.
∵f(-x)=$\frac{1}{2}$+$\frac{1}{{2}^{-x}-1}$=$\frac{1}{2}$+$\frac{{2}^{x}}{{1-2}^{x}}$=$\frac{1}{2}$+$\frac{{-2}^{x}+1-1}{{2}^{x}-1}$=-($\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$ )=-f(x),故f(x)为奇函数.
(2)已知关于x的函数g(x)=log${\;}_{\frac{1}{2}}$〔x2-ax+3a),其中a是实常数.
若g(x)在区间[2,+∞)上是减函数,则h(x)=x2-ax+3a在区间[2,+∞)上是增函数,且h(x)=x2-ax+3a>0恒成立.
∴$\left\{\begin{array}{l}{\frac{a}{2}≤2}\\{h(2)4-2a+3a>0}\end{array}\right.$,求得-4<a≤4,即实数a的取值范围为(-4,4].
点评 本题主要考查函数的奇偶性的性质,利用单调性求函数的最值,复合函数的单调性,函数的恒成立问题,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | A与C互斥 | B. | A、B、C中任何两个均互斥 | ||
| C. | B与C互斥 | D. | A、B、C中任何两个均不互斥 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{10}}{3}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 非优秀 | 总计 | |
| 甲班 | 10 | ||
| 乙班 | 30 | ||
| 合计 |
| P(K2≥x0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| x0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com