分析 由loga1=0得x-1=1,求出x的值以及y的值,即求出定点A的坐标.当直线的斜率k不存在时,直线方程x=2,它到原点的距离是2,成立;当直线的斜率k存在时,设直线方程为y-1=k(x-2),整理,得kx-y-2k+1=0,由直线与原点的距离为2,解得k,由此能得到所求的直线方程.
解答 解:∵loga1=0,
∴当x-1=1,即x=2时,y=1,
则函数y=loga(x-1)+1的图象恒过定点 A(2,1).
∴①当直线的斜率k不存在时,直线方程x=2,它到原点的距离是2,成立;
②当直线的斜率k存在时,设直线方程为y-1=k(x-2),整理,得kx-y-2k+1=0,
∵直线与原点的距离为2,
∴$\frac{|-2k+1|}{\sqrt{{k}^{2}+1}}$=2,解得k=-$\frac{3}{4}$,
∴直线为3x+4y-10=0.
故所求的直线方程为:x=2或3x+4y-10=0.
故答案为:x=2或3x+4y-10=0.
点评 本题考查对数函数的性质和特殊点,主要利用loga1=0,属于基础题.解题时要认真审题,注意点到直线的距离公式的应用.易错点是容易忽视直线的斜率不存在的情况.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | $\frac{3}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com