精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=x(a-lnx)-1(a∈R).
(1)若a=2,求函数f(x)在(1,e2)上的零点个数(e为自然对数的底数);
(2)若f(x)在区间(1,e2)上是单调函数,求a的取值集合;
(3)若f(x)有两零点x1,x2(x1<x2),求证:x1+x2>2.

分析 (1)求导数,确定函数的单调性,求出最小值,即可得出结论;
(2)f(x)在区间(1,e2)上是单调函数,可得a-1-lnx≥0或a-1-lnx≤0在区间(1,e2)上恒成立,即可求a的取值集合;
(3)由题意,lnx+$\frac{1}{x}$-a=0有两零点x1,x2(x1<x2),设g(x)=lnx+$\frac{1}{x}$-a,根据函数的单调性得到0<x1<1<x2,设h(x)=g(x)-g(2-x),(0<x<1),结合h(x)的单调性证明即可.

解答 (1)解:a=2,f(x)=x(2-lnx)-1,
∴f′(x)=1-lnx,
∴x∈(1,e),f′(x)<0,函数单调递减;x∈(e,e2),f′(x)>0,函数单调递增,
∴f(e)=e-1>0,
∴函数f(x)在(1,e2)上的零点个数为0;
(2)解:∵f(x)=x(a-lnx)-1,
∴f′(x)=a-1-lnx,
∵f(x)在区间(1,e2)上是单调函数,
∴a-1-lnx≥0或a-1-lnx≤0在区间(1,e2)上恒成立,
∴a≥1+lnx或a≤1+lnx在区间(1,e2)上恒成立,
∴a≥3或a≤0;
(3)证明:∵f(x)有两零点x1,x2(x1<x2),
∴x1(a-lnx1)-1=0,x2(a-lnx2)-1=0,
∴a=lnx1+$\frac{1}{{x}_{1}}$=lnx2+$\frac{1}{{x}_{2}}$,
∴lnx+$\frac{1}{x}$-a=0有两零点x1,x2(x1<x2),
设g(x)=lnx+$\frac{1}{x}$-a,g′(x)=$\frac{x-1}{{x}^{2}}$
∴g(x)在(0,1)上单调增,在(1,+∞)上单调减,
所以0<x1<1<x2
设h(x)=g(x)-g(2-x),(0<x<1),
则h(x)=lnx-ln(2-x)+$\frac{1}{x}$-$\frac{1}{2-x}$(0<x<1),
h′(x)>0恒成立,则h(x)在(0,1)上单调增,
所以h(x)<h(1)=0,所以h(x1)=g(x1)-g(2-x1)<0,
即g(x1)<g(2-x1),即g(x2)<g(2-x1
又g(x)在(1,+∞)上单调减,x2,2-x1∈(1,+∞),所以x2>2-x1,即x1+x2>2.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,函数恒成立问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若函数y=loga(x-1)+1(a>0,a≠1)的图象恒过定点A,则过点A且到原点的距离等于2的直线方程为x-2=0或3x+4y-10=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列函数的导数:
(1)y=exlnx;                                
(2)y=$\frac{1+cosx}{sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-2x-3.求:
(1)f(x)的值域;
(2)f(x)的零点;
(3)f(x)<0时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M满足$\overrightarrow{BM}$=2$\overrightarrow{MA}$,直线OM的斜率为$\frac{\sqrt{5}}{10}$,则椭圆E的离心率e=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下的2×2列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为$\frac{2}{7}$.
优秀非优秀总计
甲班10
乙班30
合计
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?
P(K2≥x00.500.400.250.150.100.050.0250.0100.0050.001
x00.4550.7081.3232.0722.0763.8415.0246.6357.87910.828
参考公式及数据:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}}$,b=log${\;}_{\frac{1}{3}}}$2,c=log23,则(  )
A.a>b>cB.a>c>bC.b>c>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A(3,4),B(-2,-1).若直线l:y=k(x-2)+1与线段AB相交,则k的取值范围是(  )
A.[$\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$]∪[3,+∞)C.(-∞,0]∪[$\frac{1}{2}$,3)D.[$\frac{1}{2}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.现对一个生产茶杯的工厂的日产量进行统计,下面是50天的统计结果(单位:个)
日产量222527
频数1035a
(1)根据上表的数据,求一天的产量分别为22个,25个和27个的频率;
(2)假设工厂各天的茶杯产量相互独立,每个茶杯的成本为10元,且每天生产的茶杯均能以每个20元销售完.若以上述频率作为概率,ξ表示该工厂两天生产的茶杯的利润和(单位:元),求ξ的分布列;
(3)若该工厂两天生产的茶杯的利润和的期望值超过480元,则可被评为先进单位.请估计该工厂能否被评为先进单位?

查看答案和解析>>

同步练习册答案