精英家教网 > 高中数学 > 题目详情
15.已知如图几何体,正方形ABCD和矩形ABEF所在平面互相垂直,AF=2AB=2AD=2,M为AF的中点,BN⊥CE,垂足为N.
(Ⅰ)求证:CF∥平面BDM;
(Ⅱ)求二面角M-BD-N的大小.

分析 (Ⅰ)连接AC,BD交于O,连接MO,由三角形中位线定理可得OM∥CF,再由线面平行的判定得答案;
(Ⅱ)分别以AD,AB,AF所在直线为x,y,z轴,建立空间直角坐标系,分别求出平面MBD与平面DNB的一个法向量,利用两个平面法向量所成角求得二面角M-BD-N的大小.

解答 (Ⅰ)证明:连接AC,BD交于O,连接MO,
∵M为AF的中点,∴OM∥CF,
∵OM?平面BDM,CF?平面BDM,
∴CF∥平面BDM;
(Ⅱ)解:分别以AD,AB,AF所在直线为x,y,z轴,建立空间直角坐标系,
∵AF=2AB=2AD=2,M为AF的中点,BN⊥CE,
∴D(1,0,0),B(0,1,0),M(0,0,1),N($\frac{4}{5}$,1,$\frac{2}{5}$),
则$\overrightarrow{DM}=(-1,0,1)$,$\overrightarrow{BM}=(0,-1,1)$,
设平面MBD的一个法向量为$\overrightarrow{m}=({x}_{1},{y}_{1},{z}_{1})$,
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DM}=-{x}_{1}+{z}_{1}=0}\\{\overrightarrow{m}•\overrightarrow{BM}=-{y}_{1}+{z}_{1}=0}\end{array}\right.$,取z1=1,得$\overrightarrow{m}=(1,1,1)$;
$\overrightarrow{DN}=(-\frac{1}{5},1,\frac{2}{5})$,$\overrightarrow{BN}=(\frac{4}{5},0,\frac{2}{5})$,
设平面DNB的一个法向量为$\overrightarrow{n}$=(x2,y2,z2),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DN}=-\frac{1}{5}{x}_{2}+{y}_{2}+\frac{2}{5}{z}_{2}=0}\\{\overrightarrow{n}•\overrightarrow{BN}=\frac{4}{5}{x}_{2}+\frac{2}{5}{z}_{2}=0}\end{array}\right.$,取x2=1,得$\overrightarrow{n}=(1,1,-2)$.
则cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1×1+1×1-2×1}{\sqrt{3}×\sqrt{6}}=0$.
∴二面角M-BD-N的大小为90°.

点评 本题考查直线与平面平行的判定,考查了利用空间向量求二面角的平面角,考查空间想象能力和计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{3}=1(a>\sqrt{3})$的中心、左焦点、左顶点、左准线与x轴的交点依次为O,F,G,H,则$\frac{FG}{OH}$取得最大值时a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)试判断函数f(x)=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$的奇偶性.
(2)已知关于x的函数g(x)=log${\;}_{\frac{1}{2}}$(x2-ax+3a),其中a是实常数.若g(x)在区间[2,+∞)上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某公司为激励创新,计划逐年加大研发奖金投入.若该公司2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是2020年(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=log4(2x+1)+mx是偶函数,则m=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:a2≥0(a∈R),命题q:函数f(x)=x2-x在区间[0,+∞)上单调递增,则下列命题  ①p∨q ②p∧q ③(¬p)∧(¬q) ④(¬p)∨q其中为假命题的序号为(  )
A.①②B.②③④C.③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知A(1,1),B(2,4),则直线AB的斜率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.向平静的水面扔下一颗石子,水波以50cm/s的速度向外扩张,当半径为300cm时,圆面积的膨胀率为30000πcm2/s.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函数g(x)=b-f(2-x),其中b∈R,若函数y=g(x)恰有3个零点,则b的取值范围是(0,2).

查看答案和解析>>

同步练习册答案